Theory and Application of Image Generation

Image generation, theory and application Luke Wood

The Code, Slides, Demos

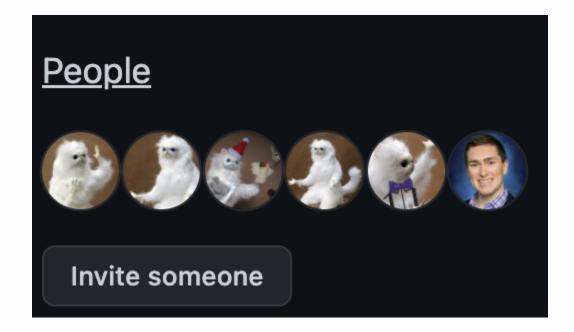
- Slides (PDF): https://lukewood.github.io/devoxx/index.pdf
- Slides (Web): https://lukewood.github.io/devoxx
- Code (for the slides): https://github.com/LukeWood/devoxx



About me

- From San Diego
- Work on the Keras team
- Last year~ on KerasCV
- Pursuing Doctorate at UC San Diego

Background in Generative Modeling



- ML since 2015
- Generative modeling since 2016 (off & on)
- Recent work on StableDiffusion in KerasCV

Generative modeling, why should you care...

Historically you could....

Generate fake shoe pictures

Learn the latent space of a dataset!

210414959

(More on this later...)

Generate DeepFakes

Reference

Our Result

All quite interesting...

- but nothing particularly useful
- too difficult to control

Until... DALL-E 2!

TEXT DESCRIPTION

An astronaut Teddy bears A bowl of soup

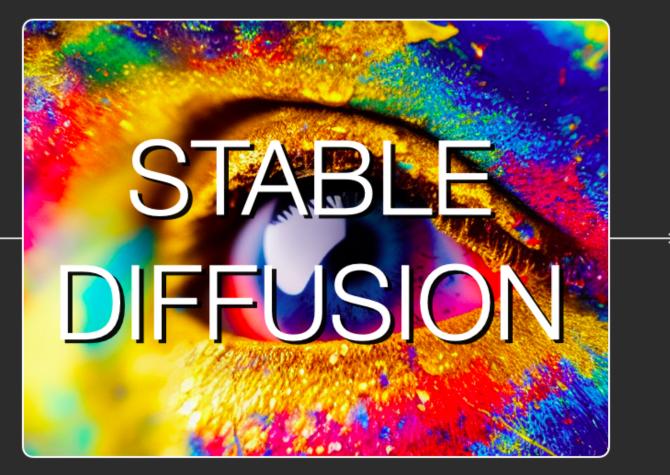
riding a horse lounging in a tropical resort in space playing basketball with cats in space

in a photorealistic style in the style of Andy Warhol as a pencil drawing

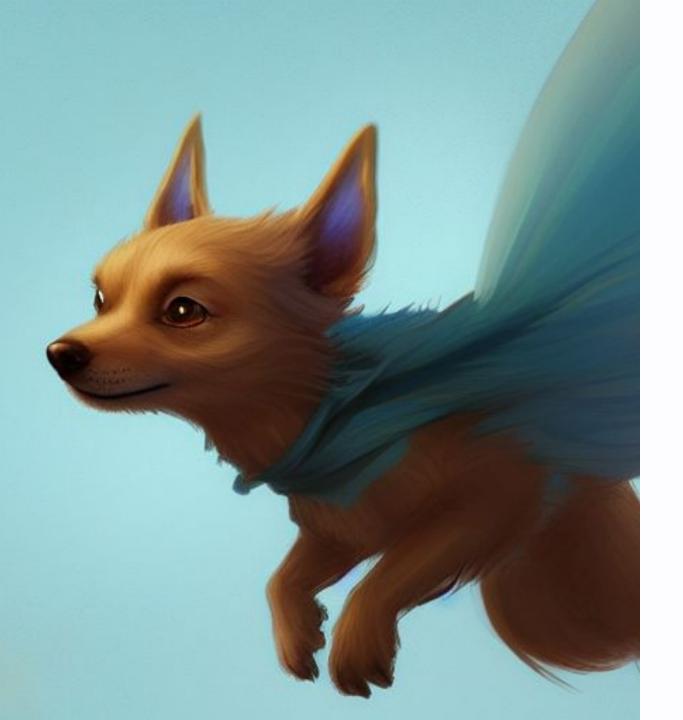
And then... StableDiffusion!

Stable Diffusion is a deep learning, text-to-image model released by startup StabilityAI in 2022.

Most importantly, StableDiffusion is 100% open source... and generously licensed

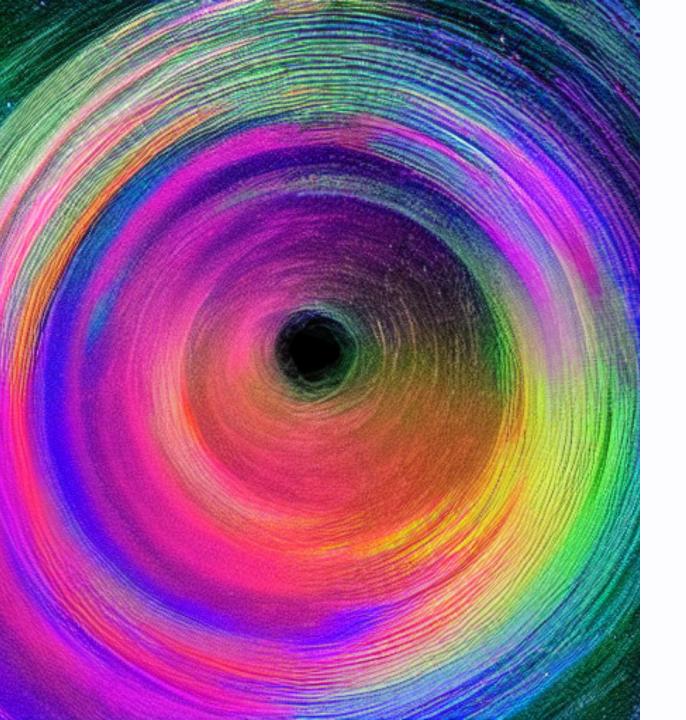


"A gentleman otter in a 19th century portrait"



"A cute magical flying dog, fantasy art drawn by Disney concept artists"

"pencil sketch of robots playing poker"



"Multicolor hyperspace"

But that's not all!

Image to image workflows GUIDED by text

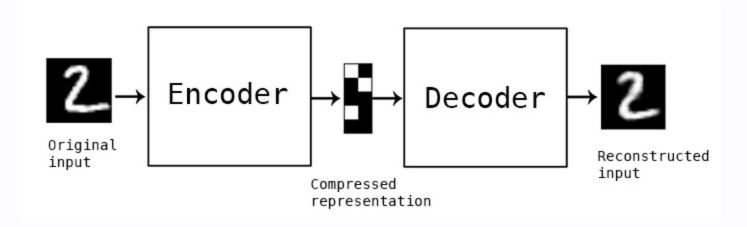
Image to image inpainting (as seen in the intro)! ... and outpainting! ... and variation generation!

Now that I have your attention...

Lets take a step back! How does this all work?

Representations & Continuity

AutoEncoders



- AutoEncoders: travel back to 1987
- early days of ML
- no large scale data
- unfortunately, no good visual results for you!
- backprop "without a teacher"

Flash forward to the 2010s

TensorFlow, GPUs, large datasets

AutoEncoders are a form of compression

Caveats

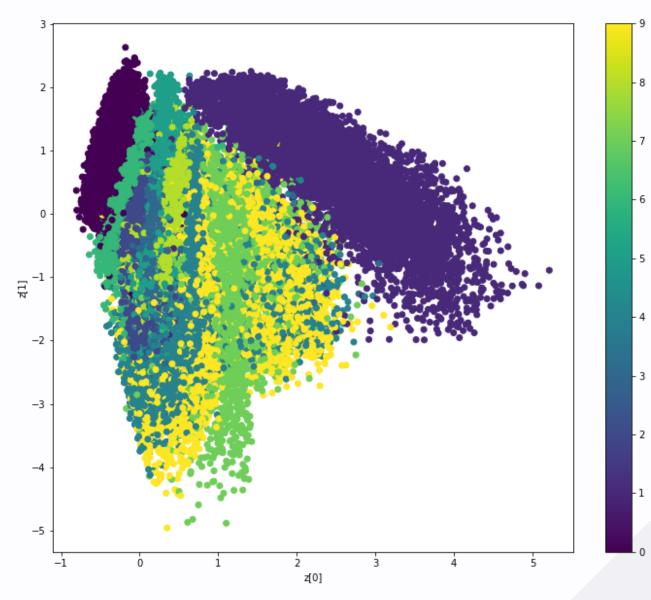
- data specific
- lossy
- "They are rarely used in practical applications" -Keras blog in 2016

... but what happens in between real samples?

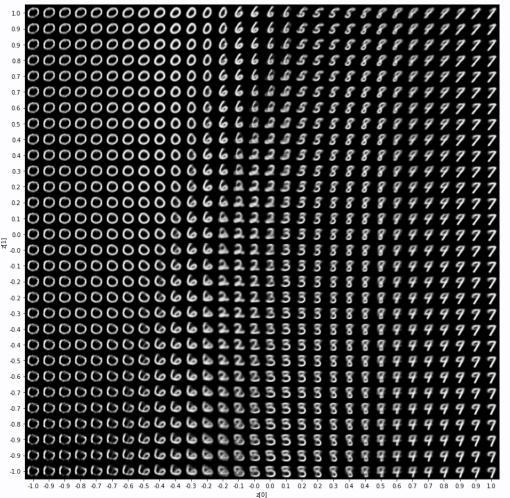
```
def plot_label_clusters(vae, data, labels):
    # display a 2D plot of the digit classes in the latent space
    z_mean, _, _ = vae.encoder.predict(data)
    plt.figure(figsize=(12, 10))
    plt.scatter(z_mean[:, 0], z_mean[:, 1], c=labels)
    plt.colorbar()
    plt.xlabel("z[0]")
    plt.ylabel("z[1]")
    plt.show()
```

```
(x_train, y_train), _ = keras.datasets.mnist.load_data()
x_train = np.expand_dims(x_train, -1).astype("float32") / 255
```

plot_label_clusters(vae, x_train, y_train)



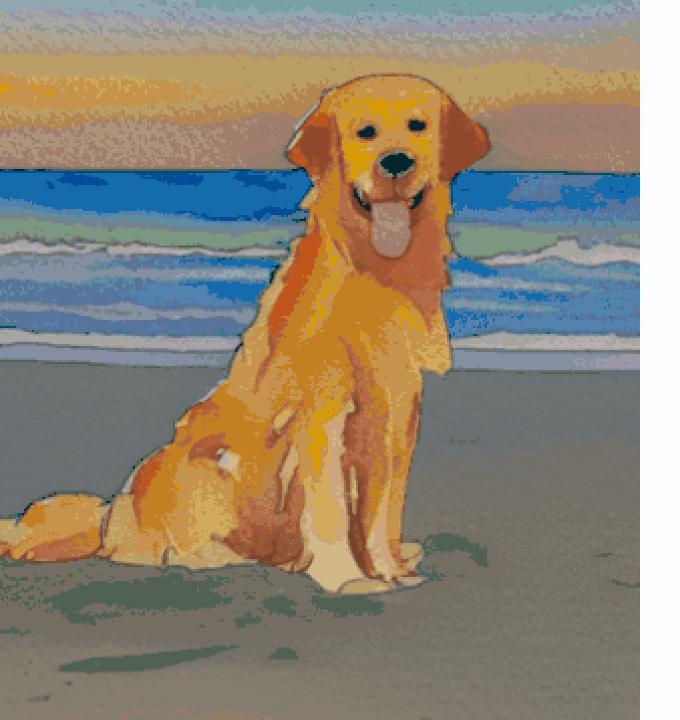
Generate new images!



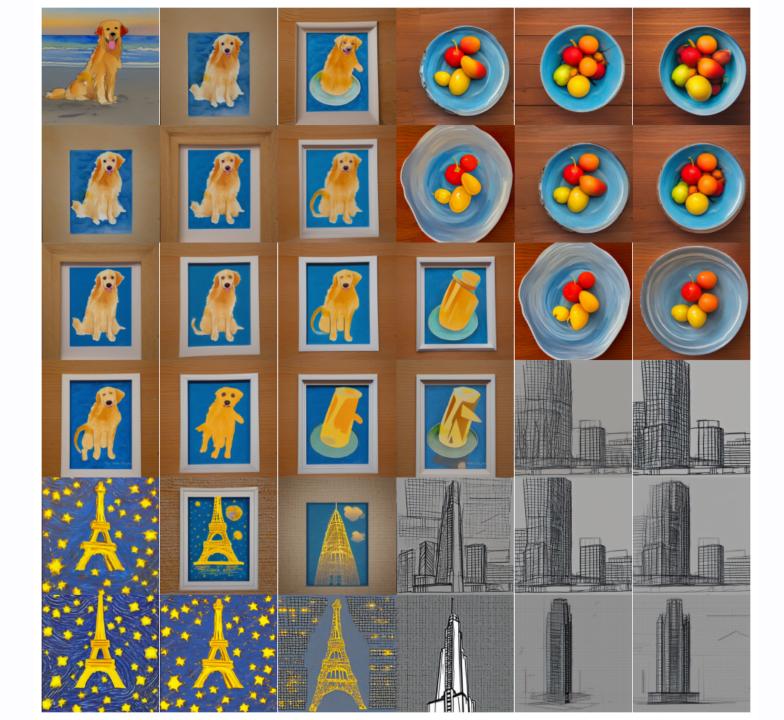
Continuity!

" Latent space walking, or latent space exploration, is the process of sampling a point in latent space and incrementally changing the latent representation. Its most common application is generating animations where each sampled point is fed to the decoder and is stored as a frame in the final animation. For highquality latent representations, this produces coherent-looking animations. These animations can provide insight into the feature map of the latent space, and can ultimately lead to improvements in the training process.

Panda 🖻 Plane



Dog 🔁 Bowl of fruit



A quick aside on Variational AutoEncoders (VAEs)...

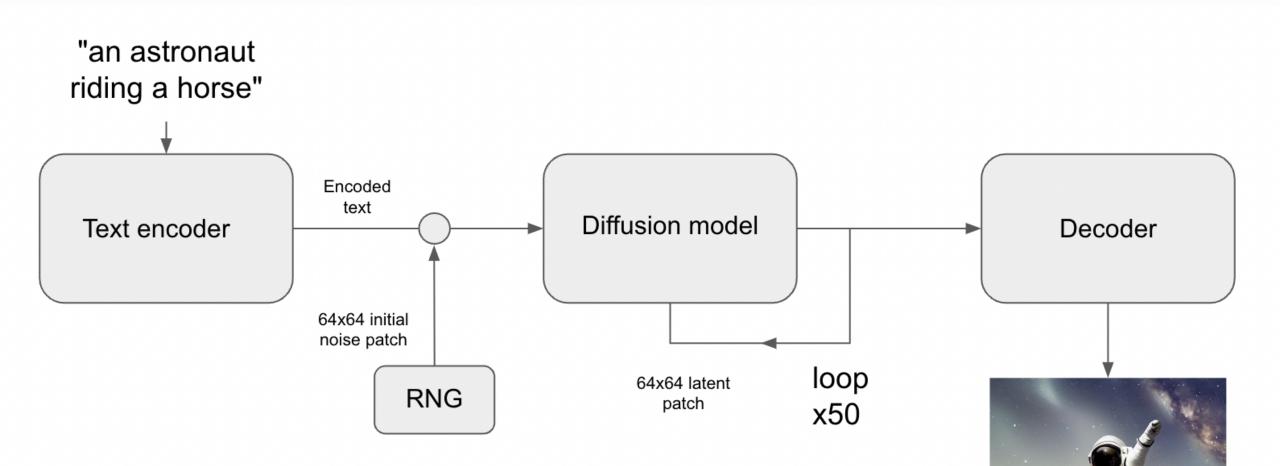
```
class Sampling(layers.Layer):
    """Uses (z_mean, z_log_var) to sample z, the vector encoding a digit."""
    def call(self, inputs):
        z_mean, z_log_var = inputs
        batch = tf.shape(z_mean)[0]
        dim = tf.shape(z_mean)[1]
        epsilon = tf.keras.backend.random_normal(shape=(batch, dim))
        return z_mean + tf.exp(0.5 * z_log_var) * epsilon
```

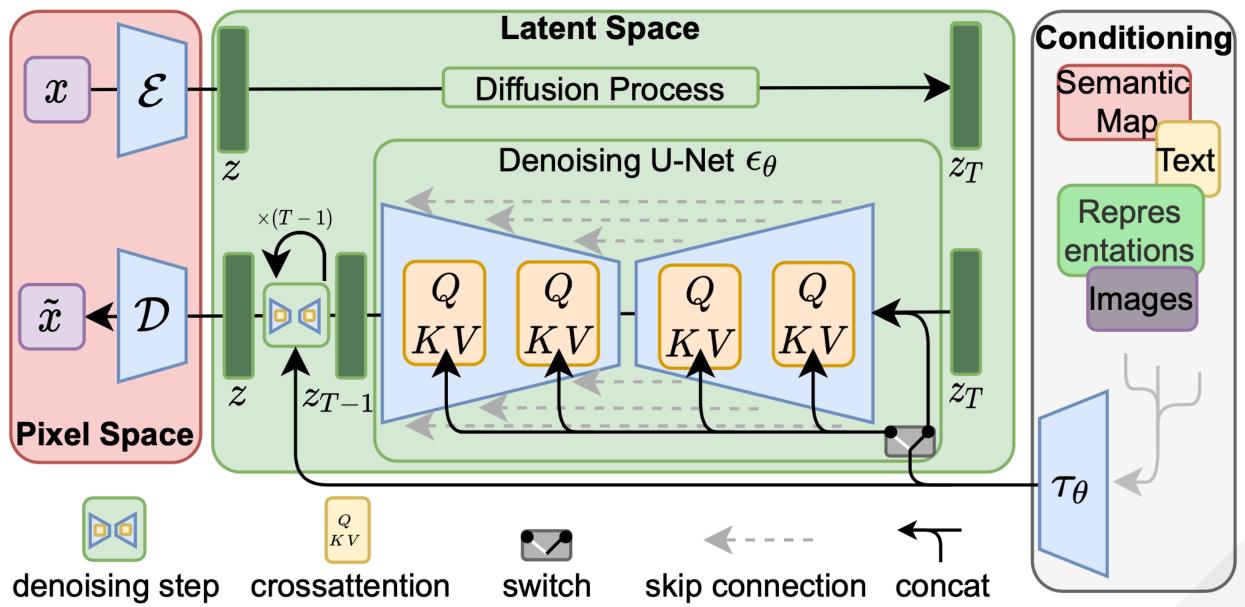
Any Questions?

(on continuity only please)

Congratulations!

You now understand approximately 1/4 of StableDiffusion.



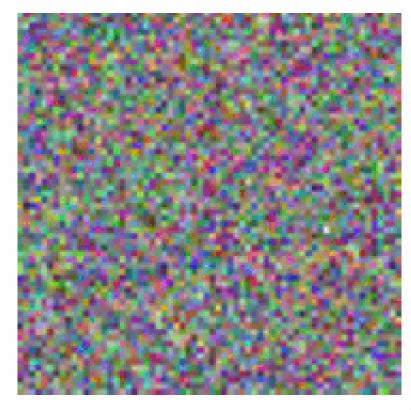


Diffusion Models

Denoising Diffusion Probabilistic Models, 2020

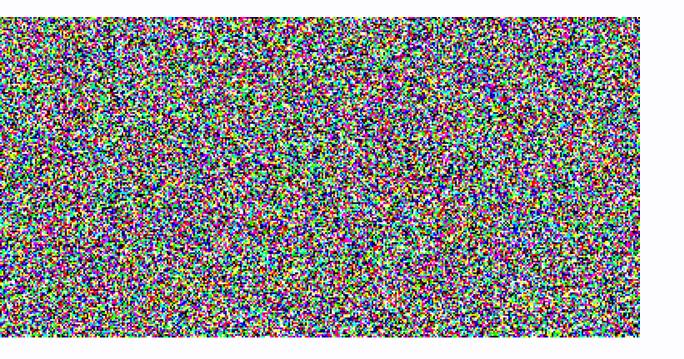
Forward diffusion noisy image

noise



Super-resolution

- Image Super-Resolution using an Efficient Sub-Pixel CNN
- Enhanced Deep Residual Networks for single-image super-resolution



Push super resolution to the limit!

- start from pure noise
- proposed in 2020

More reading on keras.io

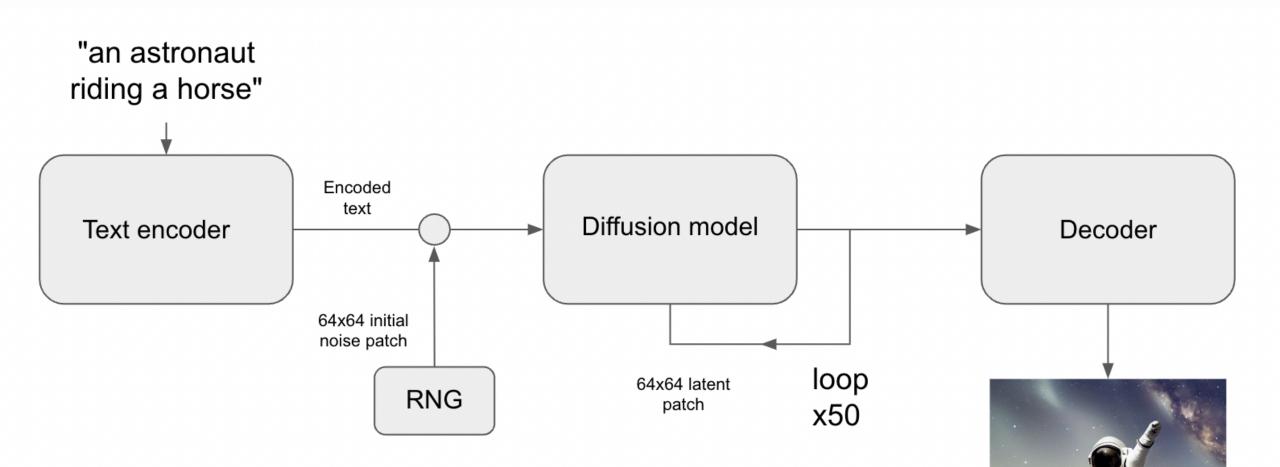
• Denoising Diffusion Implicit Models

Any questions?

(On diffusion models)

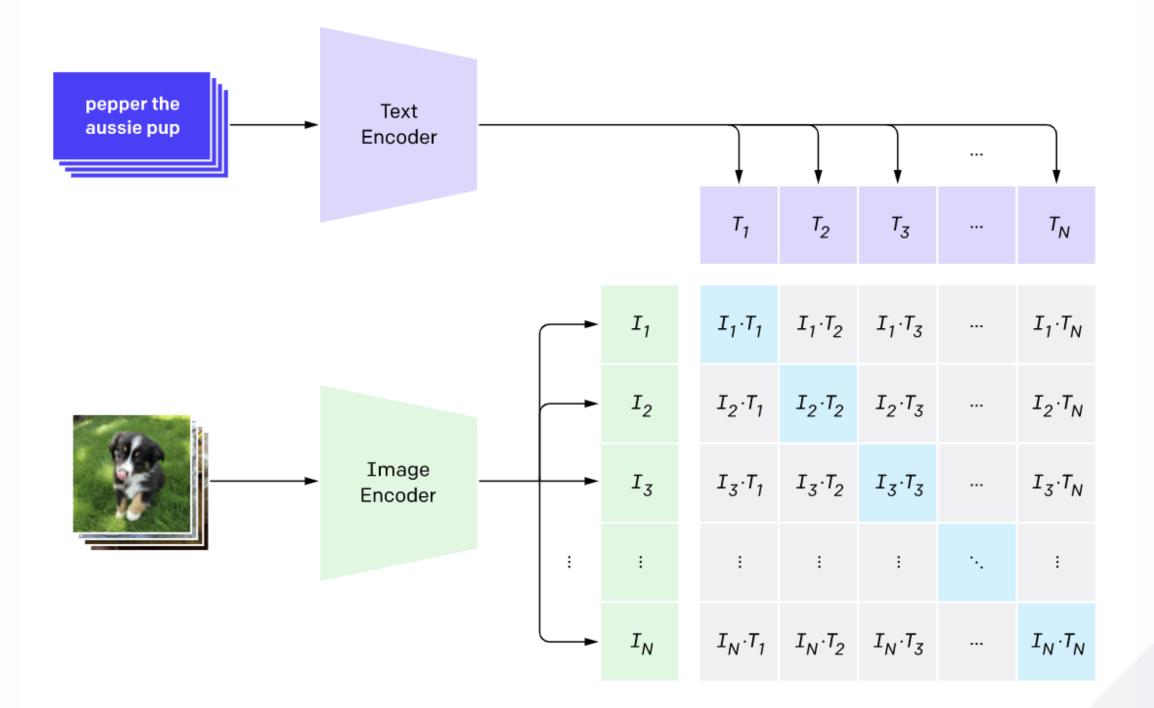
Latent diffusion models

- improves efficiency
- use VAE decoder
- UNet

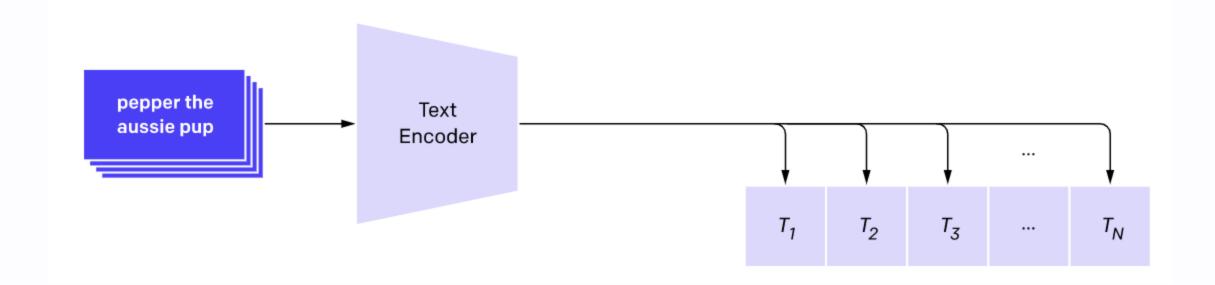


CLIP

... what you need to know

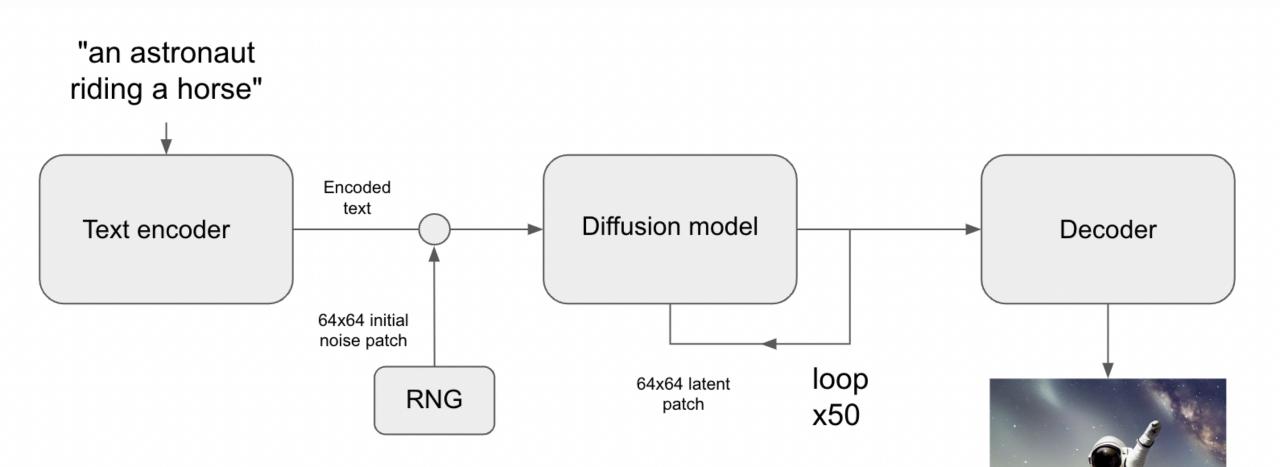


We just need the text encoder



CLIP

More reading available on the OpenAI blog post

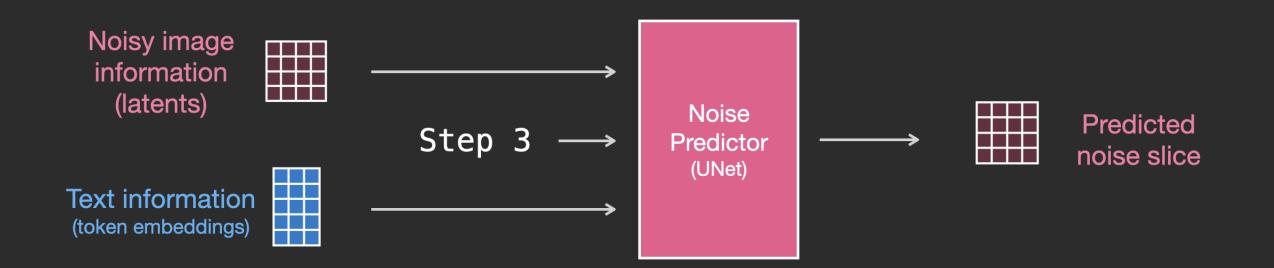


the Final Piece...

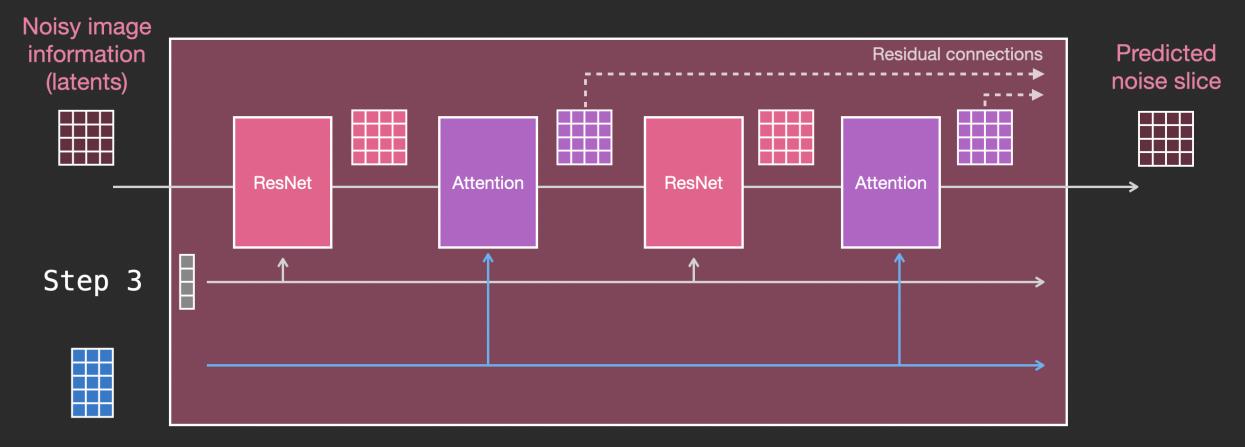
Conditioning!

Conditioning

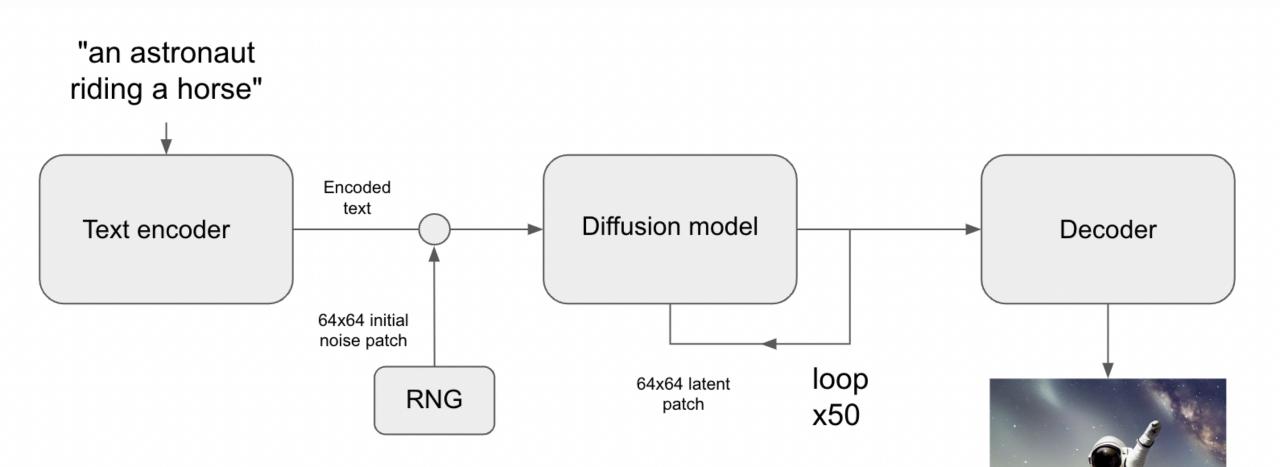
- classic deep learning
- concatenate
- 64x64x3 🖸 64x64x4

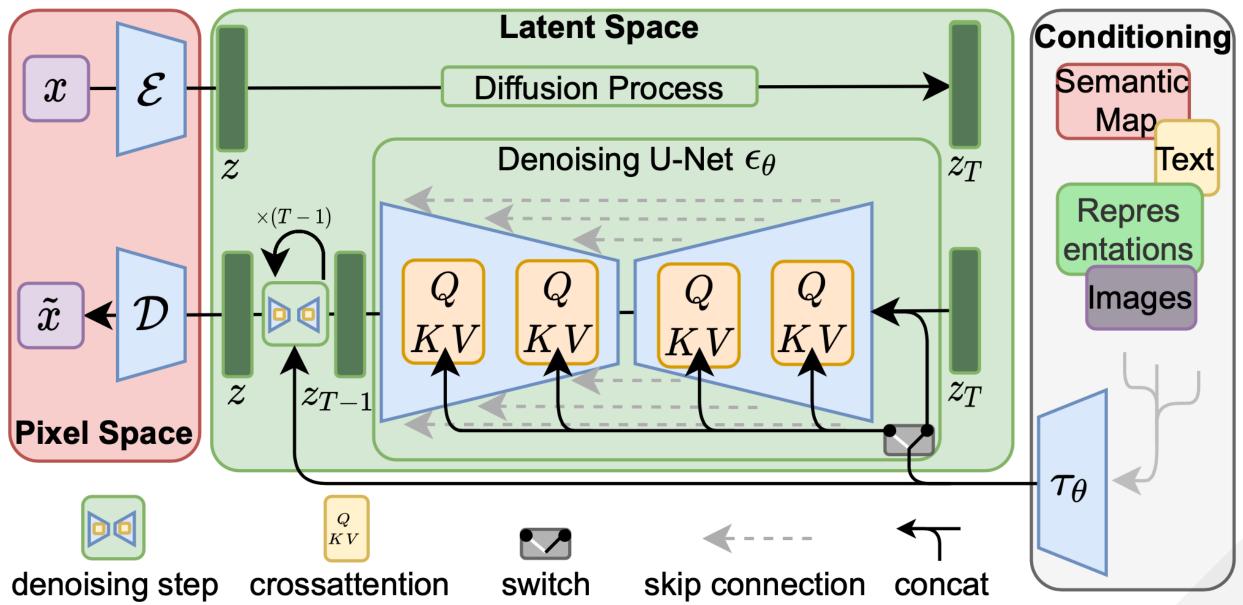


Noise Predictor with Text Conditioning (UNet with attention)



Text information (token embeddings)



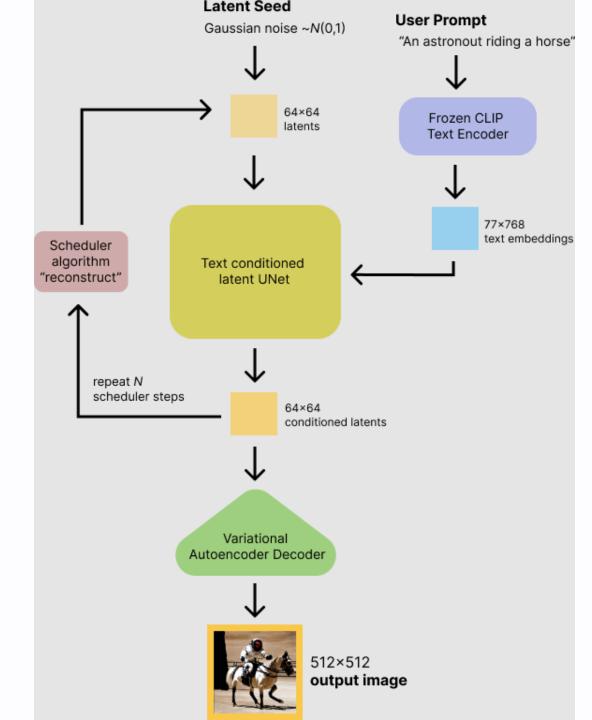


That's All!

You now know how StableDiffusion works!

How do I use it?

Text to Image Generation



"An astronaut riding a horse"

Code:

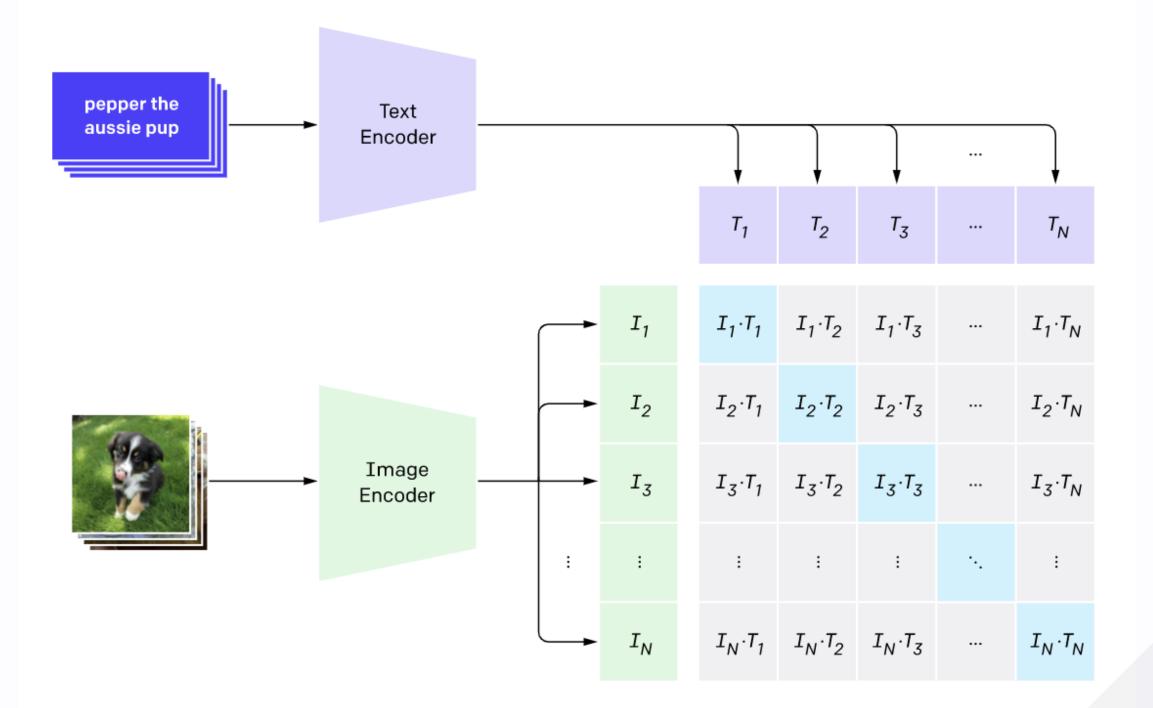
```
from tensorflow import keras
import keras_cv
```

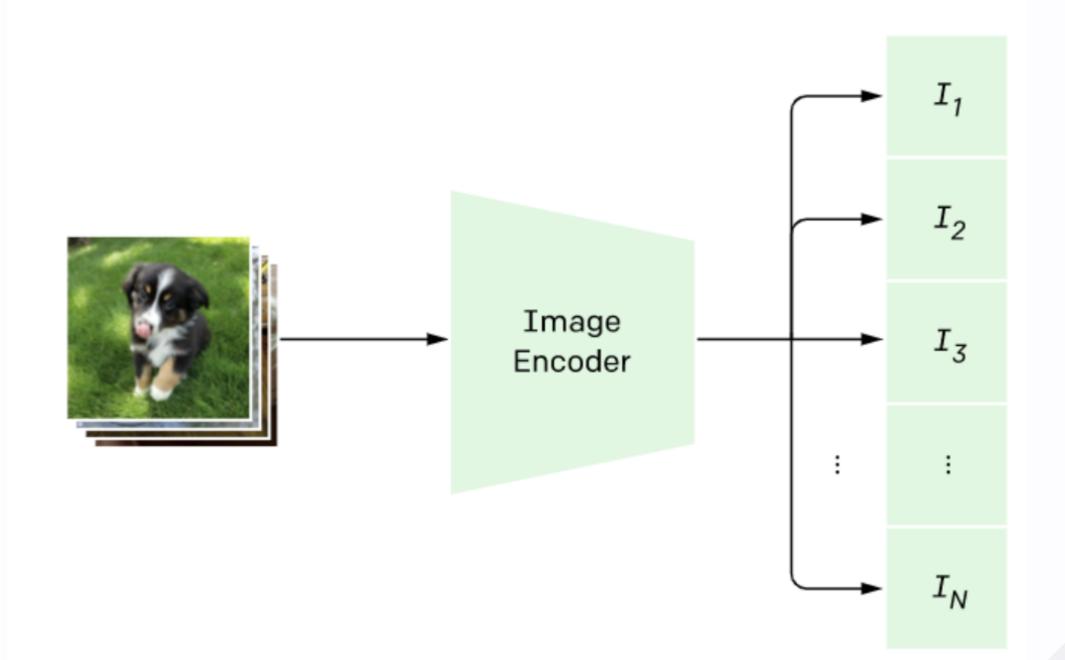
```
keras.mixed_precision.set_global_policy("mixed_float16")
model = keras_cv.models.StableDiffusion(jit_compile=True)
```

```
images = model.text_to_image(
    "Teddy bears conducting machine learning research",
    batch_size=4,
)
plot_images(images)
```

Variation generation

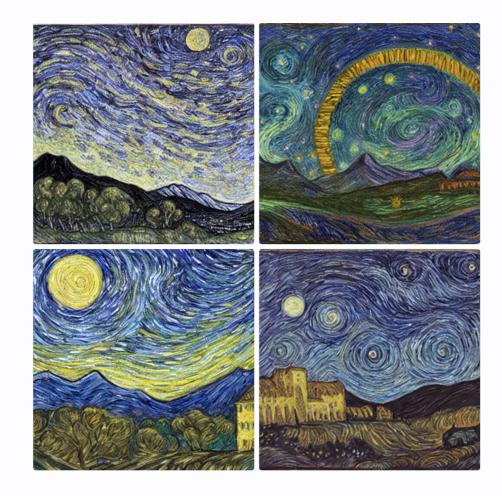
Remember CLIP?





Switch it out!

It's really that easy!



Textual Inversion

Teach new concepts to StableDiffusion!

Step 1: collect 3-5 images of your object


```
urls = [
    "https://i.imgur.com/VIedH1X.jpg",
    "https://i.imgur.com/iLkM4Ar.jpg",
    "https://i.imgur.com/eBw13hE.png",
]
files = [tf.keras.utils.get_file(origin=url) for url in urls]
# Resize images
resize = keras.layers.Resizing(height=512, width=512, crop_to_aspect_ratio=True)
images = [keras.utils.load_img(img) for img in files]
images = [keras.utils.img_to_array(img) for img in images]
images = np.array([resize(img) for img in images])
visualization.plot_gallery(images, value_range=(0, 255), rows=1, cols=3)
```

Step 2: add a special token to the model vocabulary

your_token = '<any-special-name>'
tokenizer.add_token(your_token)

Step 3: construct an image-caption dataset

```
your_token = '<any-special-name>'
templates = [
    "a photo of a \{\}",
    "a rendering of a {}",
    "a cropped photo of the {}",
   "the photo of a {}",
   # ...
templates = [t.format(your_token) for t in templates]
# Construct a TensorFlow dataset of the images + tokens
image_dataset = tf.data.Dataset.from_tensor_slices(images)
text_dataset = tf.data.Dataset.from_tensor_slices(templates)
# ... there is a bit more boilerplate to pre-process the text
train_ds = tf.data.Dataset.zip(
  (image_dataset.shuffle(), text_dataset.shuffle())
```

Step 4: Fine Tune the TextEncoder with your new dataset!

```
stable_diffusion.diffusion_model.trainable = False
stable_diffusion.decoder.trainable = False
stable_diffusion.text_encoder.trainable = True
```

```
trainer = StableDiffusionFineTuner(stable_diffusion, name="trainer")
optimizer = keras.optimizers.SGD(learning_rate=5e-4)
trainer.compile(optimizer=optimizer, loss="mse")
```

```
# trainer trains the StableDiffusion model for you.
trainer.fit(
    train_ds,
    epochs=10,
    steps_per_epoch=200
)
```


Results

images = stable_diffusion.text_to_image(
 "a photo of <any-special-name> wearing a top hat",
 batch_size=4,

plot_images(images)

Results

images = stable_diffusion.text_to_image(
 "An app icon of <any-special-name>.",
 batch_size=4,

plot_images(images)

Demo Time

Prompt requests?

Follow along on Colab!

Conclusions

- limitless possibilities
- the power of multi-modal models
- how fast the field is evolving

More Workflows Coming Soon

Other workflows are coming to KerasCV soon!

Other links

- Textual Inversion with Huggingface
- Image variations with lambda labs

Thank you!

- Slides (Web): https://lukewood.github.io/devoxx
- Slides (PDF): https://lukewood.github.io/devoxx/index.pdf
- Keras
- KerasCV

References:

- The Illustrated Stable Diffusion
- DALL-E: Introducing Outpainting
- keras.io: Variational AutoEncoder
- keras.io: A walk through latent space with Stable Diffusion
- Denoising Diffusion Implicit Models
- CLIP: Connexting Text and Images
- Stable Diffusion Image Variations