Overview

Dataset statistics

Number of variables38
Number of observations5000
Missing cells18557
Missing cells (%)9.8%
Duplicate rows0
Duplicate rows (%)0.0%
Total size in memory1.4 MiB
Average record size in memory304.0 B

Variable types

Numeric17
Categorical21

Alerts

generation-units has constant value "thousand megawatthours" Constant
total-consumption-btu-units has constant value "million MMBtu" Constant
consumption-for-eg-btu-units has constant value "million MMBtu" Constant
consumption-uto-btu-units has constant value "million MMBtu" Constant
receipts-btu-units has constant value "billion Btu" Constant
cost-per-btu-units has constant value "dollars per million Btu" Constant
sulfur-content-units has constant value "percent" Constant
ash-content-units has constant value "percent" Constant
Unnamed: 0 is highly correlated with period and 2 other fieldsHigh correlation
sectorid is highly correlated with location and 2 other fieldsHigh correlation
generation is highly correlated with total-consumption and 8 other fieldsHigh correlation
total-consumption is highly correlated with generation and 7 other fieldsHigh correlation
consumption-for-eg is highly correlated with generation and 6 other fieldsHigh correlation
consumption-uto is highly correlated with generation and 7 other fieldsHigh correlation
total-consumption-btu is highly correlated with generation and 8 other fieldsHigh correlation
consumption-for-eg-btu is highly correlated with generation and 6 other fieldsHigh correlation
consumption-uto-btu is highly correlated with generation and 8 other fieldsHigh correlation
stocks is highly correlated with fueltypeid and 9 other fieldsHigh correlation
receipts is highly correlated with generation and 6 other fieldsHigh correlation
receipts-btu is highly correlated with generation and 8 other fieldsHigh correlation
cost is highly correlated with fueltypeid and 13 other fieldsHigh correlation
cost-per-btu is highly correlated with location and 13 other fieldsHigh correlation
sulfur-content is highly correlated with location and 7 other fieldsHigh correlation
ash-content is highly correlated with fueltypeid and 5 other fieldsHigh correlation
heat-content is highly correlated with fueltypeid and 11 other fieldsHigh correlation
period is highly correlated with Unnamed: 0 and 2 other fieldsHigh correlation
location is highly correlated with Unnamed: 0 and 6 other fieldsHigh correlation
stateDescription is highly correlated with Unnamed: 0 and 6 other fieldsHigh correlation
sectorDescription is highly correlated with location and 2 other fieldsHigh correlation
fueltypeid is highly correlated with fuelTypeDescription and 13 other fieldsHigh correlation
fuelTypeDescription is highly correlated with fueltypeid and 13 other fieldsHigh correlation
generation-units is highly correlated with consumption-uto-btu-units and 19 other fieldsHigh correlation
total-consumption-units is highly correlated with fueltypeid and 10 other fieldsHigh correlation
consumption-for-eg-units is highly correlated with fueltypeid and 10 other fieldsHigh correlation
consumption-uto-units is highly correlated with fueltypeid and 10 other fieldsHigh correlation
total-consumption-btu-units is highly correlated with consumption-uto-btu-units and 19 other fieldsHigh correlation
consumption-for-eg-btu-units is highly correlated with consumption-uto-btu-units and 19 other fieldsHigh correlation
consumption-uto-btu-units is highly correlated with sectorDescription and 19 other fieldsHigh correlation
stocks-units is highly correlated with fueltypeid and 10 other fieldsHigh correlation
receipts-units is highly correlated with fueltypeid and 10 other fieldsHigh correlation
receipts-btu-units is highly correlated with consumption-uto-btu-units and 19 other fieldsHigh correlation
cost-units is highly correlated with fueltypeid and 10 other fieldsHigh correlation
cost-per-btu-units is highly correlated with consumption-uto-btu-units and 19 other fieldsHigh correlation
sulfur-content-units is highly correlated with consumption-uto-btu-units and 19 other fieldsHigh correlation
ash-content-units is highly correlated with consumption-uto-btu-units and 19 other fieldsHigh correlation
heat-content-units is highly correlated with fueltypeid and 10 other fieldsHigh correlation
generation has 502 (10.0%) missing values Missing
total-consumption has 623 (12.5%) missing values Missing
consumption-for-eg has 623 (12.5%) missing values Missing
consumption-uto has 623 (12.5%) missing values Missing
total-consumption-btu has 623 (12.5%) missing values Missing
consumption-for-eg-btu has 623 (12.5%) missing values Missing
consumption-uto-btu has 623 (12.5%) missing values Missing
stocks has 4585 (91.7%) missing values Missing
receipts has 296 (5.9%) missing values Missing
receipts-btu has 296 (5.9%) missing values Missing
cost has 3978 (79.6%) missing values Missing
cost-per-btu has 4274 (85.5%) missing values Missing
sulfur-content has 296 (5.9%) missing values Missing
ash-content has 296 (5.9%) missing values Missing
heat-content has 296 (5.9%) missing values Missing
generation is highly skewed (γ1 = 22.9144148) Skewed
total-consumption is highly skewed (γ1 = 30.73579515) Skewed
consumption-for-eg is highly skewed (γ1 = 29.22453334) Skewed
consumption-uto is highly skewed (γ1 = 34.29031446) Skewed
total-consumption-btu is highly skewed (γ1 = 23.39351969) Skewed
consumption-for-eg-btu is highly skewed (γ1 = 22.90084752) Skewed
consumption-uto-btu is highly skewed (γ1 = 22.41990393) Skewed
receipts is highly skewed (γ1 = 29.87602857) Skewed
receipts-btu is highly skewed (γ1 = 21.25369134) Skewed
Unnamed: 0 is uniformly distributed Uniform
Unnamed: 0 has unique values Unique
generation has 684 (13.7%) zeros Zeros
total-consumption has 2449 (49.0%) zeros Zeros
consumption-for-eg has 2455 (49.1%) zeros Zeros
consumption-uto has 3375 (67.5%) zeros Zeros
total-consumption-btu has 713 (14.3%) zeros Zeros
consumption-for-eg-btu has 720 (14.4%) zeros Zeros
consumption-uto-btu has 2849 (57.0%) zeros Zeros
stocks has 175 (3.5%) zeros Zeros
receipts has 3812 (76.2%) zeros Zeros
receipts-btu has 3690 (73.8%) zeros Zeros
cost has 810 (16.2%) zeros Zeros
cost-per-btu has 497 (9.9%) zeros Zeros
sulfur-content has 4124 (82.5%) zeros Zeros
ash-content has 4198 (84.0%) zeros Zeros
heat-content has 2556 (51.1%) zeros Zeros

Reproduction

Analysis started2022-11-17 22:33:16.092715
Analysis finished2022-11-17 22:34:10.128389
Duration54.04 seconds
Software versionpandas-profiling v3.4.0
Download configurationconfig.json

Variables

Unnamed: 0
Real number (ℝ≥0)

HIGH CORRELATION
UNIFORM
UNIQUE

Distinct5000
Distinct (%)100.0%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean2499.5
Minimum0
Maximum4999
Zeros1
Zeros (%)< 0.1%
Negative0
Negative (%)0.0%
Memory size39.2 KiB
2022-11-17T14:34:10.237684image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile249.95
Q11249.75
median2499.5
Q33749.25
95-th percentile4749.05
Maximum4999
Range4999
Interquartile range (IQR)2499.5

Descriptive statistics

Standard deviation1443.520003
Coefficient of variation (CV)0.577523506
Kurtosis-1.2
Mean2499.5
Median Absolute Deviation (MAD)1250
Skewness0
Sum12497500
Variance2083750
MonotonicityStrictly increasing
2022-11-17T14:34:10.403090image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
01
 
< 0.1%
33301
 
< 0.1%
33371
 
< 0.1%
33361
 
< 0.1%
33351
 
< 0.1%
33341
 
< 0.1%
33331
 
< 0.1%
33321
 
< 0.1%
33311
 
< 0.1%
33291
 
< 0.1%
Other values (4990)4990
99.8%
ValueCountFrequency (%)
01
< 0.1%
11
< 0.1%
21
< 0.1%
31
< 0.1%
41
< 0.1%
51
< 0.1%
61
< 0.1%
71
< 0.1%
81
< 0.1%
91
< 0.1%
ValueCountFrequency (%)
49991
< 0.1%
49981
< 0.1%
49971
< 0.1%
49961
< 0.1%
49951
< 0.1%
49941
< 0.1%
49931
< 0.1%
49921
< 0.1%
49911
< 0.1%
49901
< 0.1%

period
Categorical

HIGH CORRELATION

Distinct17
Distinct (%)0.3%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
2021-10
2542 
2021-09
1179 
2021-07
 
174
2021-12
 
159
2022-01
 
155
Other values (12)
791 

Length

Max length7
Median length7
Mean length7
Min length7

Characters and Unicode

Total characters35000
Distinct characters11
Distinct categories2 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row2021-06
2nd row2021-06
3rd row2021-06
4th row2021-06
5th row2021-06

Common Values

ValueCountFrequency (%)
2021-102542
50.8%
2021-091179
23.6%
2021-07174
 
3.5%
2021-12159
 
3.2%
2022-01155
 
3.1%
2022-02154
 
3.1%
2021-11145
 
2.9%
2021-08132
 
2.6%
2022-0390
 
1.8%
2010-0364
 
1.3%
Other values (7)206
 
4.1%

Length

2022-11-17T14:34:10.541593image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
2021-102542
50.8%
2021-091179
23.6%
2021-07174
 
3.5%
2021-12159
 
3.2%
2022-01155
 
3.1%
2022-02154
 
3.1%
2021-11145
 
2.9%
2021-08132
 
2.6%
2022-0390
 
1.8%
2010-0364
 
1.3%
Other values (7)206
 
4.1%

Most occurring characters

ValueCountFrequency (%)
210653
30.4%
09822
28.1%
17742
22.1%
-5000
14.3%
91179
 
3.4%
7174
 
0.5%
3154
 
0.4%
8132
 
0.4%
476
 
0.2%
539
 
0.1%

Most occurring categories

ValueCountFrequency (%)
Decimal Number30000
85.7%
Dash Punctuation5000
 
14.3%

Most frequent character per category

Decimal Number
ValueCountFrequency (%)
210653
35.5%
09822
32.7%
17742
25.8%
91179
 
3.9%
7174
 
0.6%
3154
 
0.5%
8132
 
0.4%
476
 
0.3%
539
 
0.1%
629
 
0.1%
Dash Punctuation
ValueCountFrequency (%)
-5000
100.0%

Most occurring scripts

ValueCountFrequency (%)
Common35000
100.0%

Most frequent character per script

Common
ValueCountFrequency (%)
210653
30.4%
09822
28.1%
17742
22.1%
-5000
14.3%
91179
 
3.4%
7174
 
0.5%
3154
 
0.4%
8132
 
0.4%
476
 
0.2%
539
 
0.1%

Most occurring blocks

ValueCountFrequency (%)
ASCII35000
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
210653
30.4%
09822
28.1%
17742
22.1%
-5000
14.3%
91179
 
3.4%
7174
 
0.5%
3154
 
0.4%
8132
 
0.4%
476
 
0.2%
539
 
0.1%

location
Categorical

HIGH CORRELATION

Distinct37
Distinct (%)0.7%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
CA
391 
TX
 
316
TN
 
316
PCN
 
308
90
 
297
Other values (32)
3372 

Length

Max length3
Median length2
Mean length2.2532
Min length2

Characters and Unicode

Total characters11266
Distinct characters23
Distinct categories2 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowSD
2nd rowSD
3rd rowSD
4th rowSD
5th rowSD

Common Values

ValueCountFrequency (%)
CA391
 
7.8%
TX316
 
6.3%
TN316
 
6.3%
PCN308
 
6.2%
90297
 
5.9%
CO262
 
5.2%
AR245
 
4.9%
PCC207
 
4.1%
WSC204
 
4.1%
AL198
 
4.0%
Other values (27)2256
45.1%

Length

2022-11-17T14:34:10.660824image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
ca391
 
7.8%
tx316
 
6.3%
tn316
 
6.3%
pcn308
 
6.2%
90297
 
5.9%
co262
 
5.2%
ar245
 
4.9%
pcc207
 
4.1%
wsc204
 
4.1%
al198
 
4.0%
Other values (27)2256
45.1%

Most occurring characters

ValueCountFrequency (%)
C1840
16.3%
A1480
13.1%
T1107
9.8%
N858
 
7.6%
S809
 
7.2%
P690
 
6.1%
M593
 
5.3%
R570
 
5.1%
I396
 
3.5%
D391
 
3.5%
Other values (13)2532
22.5%

Most occurring categories

ValueCountFrequency (%)
Uppercase Letter10672
94.7%
Decimal Number594
 
5.3%

Most frequent character per category

Uppercase Letter
ValueCountFrequency (%)
C1840
17.2%
A1480
13.9%
T1107
10.4%
N858
8.0%
S809
7.6%
P690
 
6.5%
M593
 
5.6%
R570
 
5.3%
I396
 
3.7%
D391
 
3.7%
Other values (11)1938
18.2%
Decimal Number
ValueCountFrequency (%)
9297
50.0%
0297
50.0%

Most occurring scripts

ValueCountFrequency (%)
Latin10672
94.7%
Common594
 
5.3%

Most frequent character per script

Latin
ValueCountFrequency (%)
C1840
17.2%
A1480
13.9%
T1107
10.4%
N858
8.0%
S809
7.6%
P690
 
6.5%
M593
 
5.6%
R570
 
5.3%
I396
 
3.7%
D391
 
3.7%
Other values (11)1938
18.2%
Common
ValueCountFrequency (%)
9297
50.0%
0297
50.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII11266
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
C1840
16.3%
A1480
13.1%
T1107
9.8%
N858
 
7.6%
S809
 
7.2%
P690
 
6.1%
M593
 
5.3%
R570
 
5.1%
I396
 
3.5%
D391
 
3.5%
Other values (13)2532
22.5%

stateDescription
Categorical

HIGH CORRELATION

Distinct37
Distinct (%)0.7%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
California
391 
Texas
 
316
Tennessee
 
316
Pacific Noncontiguous
 
308
Pacific
 
297
Other values (32)
3372 

Length

Max length21
Median length14
Mean length10.4584
Min length4

Characters and Unicode

Total characters52292
Distinct characters41
Distinct categories4 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowSouth Dakota
2nd rowSouth Dakota
3rd rowSouth Dakota
4th rowSouth Dakota
5th rowSouth Dakota

Common Values

ValueCountFrequency (%)
California391
 
7.8%
Texas316
 
6.3%
Tennessee316
 
6.3%
Pacific Noncontiguous308
 
6.2%
Pacific297
 
5.9%
Colorado262
 
5.2%
Arkansas245
 
4.9%
Pacific Contiguous207
 
4.1%
West South Central204
 
4.1%
Alabama198
 
4.0%
Other values (27)2256
45.1%

Length

2022-11-17T14:34:10.793700image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
pacific812
 
11.4%
south612
 
8.6%
california391
 
5.5%
central385
 
5.4%
tennessee316
 
4.4%
texas316
 
4.4%
noncontiguous308
 
4.3%
colorado262
 
3.7%
arkansas245
 
3.4%
atlantic241
 
3.4%
Other values (33)3220
45.3%

Most occurring characters

ValueCountFrequency (%)
a6250
 
12.0%
o4491
 
8.6%
n4406
 
8.4%
i4160
 
8.0%
t3219
 
6.2%
s2992
 
5.7%
e2950
 
5.6%
c2441
 
4.7%
l2212
 
4.2%
2108
 
4.0%
Other values (31)17063
32.6%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter42869
82.0%
Uppercase Letter7177
 
13.7%
Space Separator2108
 
4.0%
Other Punctuation138
 
0.3%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
a6250
14.6%
o4491
10.5%
n4406
10.3%
i4160
9.7%
t3219
7.5%
s2992
 
7.0%
e2950
 
6.9%
c2441
 
5.7%
l2212
 
5.2%
u1988
 
4.6%
Other values (13)7760
18.1%
Uppercase Letter
ValueCountFrequency (%)
C1325
18.5%
P987
13.8%
A840
11.7%
T701
9.8%
S681
9.5%
M593
8.3%
I391
 
5.4%
W379
 
5.3%
N341
 
4.8%
R325
 
4.5%
Other values (6)614
8.6%
Space Separator
ValueCountFrequency (%)
2108
100.0%
Other Punctuation
ValueCountFrequency (%)
.138
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin50046
95.7%
Common2246
 
4.3%

Most frequent character per script

Latin
ValueCountFrequency (%)
a6250
12.5%
o4491
 
9.0%
n4406
 
8.8%
i4160
 
8.3%
t3219
 
6.4%
s2992
 
6.0%
e2950
 
5.9%
c2441
 
4.9%
l2212
 
4.4%
u1988
 
4.0%
Other values (29)14937
29.8%
Common
ValueCountFrequency (%)
2108
93.9%
.138
 
6.1%

Most occurring blocks

ValueCountFrequency (%)
ASCII52292
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
a6250
 
12.0%
o4491
 
8.6%
n4406
 
8.4%
i4160
 
8.0%
t3219
 
6.2%
s2992
 
5.7%
e2950
 
5.6%
c2441
 
4.7%
l2212
 
4.2%
2108
 
4.0%
Other values (31)17063
32.6%

sectorid
Real number (ℝ≥0)

HIGH CORRELATION

Distinct15
Distinct (%)0.3%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean55.1342
Minimum1
Maximum99
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size39.2 KiB
2022-11-17T14:34:10.919401image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum1
5-th percentile1
Q13
median90
Q397
95-th percentile99
Maximum99
Range98
Interquartile range (IQR)94

Descriptive statistics

Standard deviation46.09975735
Coefficient of variation (CV)0.8361372315
Kurtosis-1.932528786
Mean55.1342
Median Absolute Deviation (MAD)9
Skewness-0.2345948465
Sum275671
Variance2125.187628
MonotonicityNot monotonic
2022-11-17T14:34:11.033156image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=15)
ValueCountFrequency (%)
99719
14.4%
1560
11.2%
2508
10.2%
98502
10.0%
90455
9.1%
94409
8.2%
97366
7.3%
96290
5.8%
5258
 
5.2%
3243
 
4.9%
Other values (5)690
13.8%
ValueCountFrequency (%)
1560
11.2%
2508
10.2%
3243
4.9%
4235
4.7%
5258
5.2%
6134
 
2.7%
7223
 
4.5%
842
 
0.8%
90455
9.1%
94409
8.2%
ValueCountFrequency (%)
99719
14.4%
98502
10.0%
97366
7.3%
96290
5.8%
9556
 
1.1%
94409
8.2%
90455
9.1%
842
 
0.8%
7223
 
4.5%
6134
 
2.7%

sectorDescription
Categorical

HIGH CORRELATION

Distinct15
Distinct (%)0.3%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
All Sectors
719 
Electric Utility
560 
IPP Non-CHP
508 
Electric Power
502 
Electric Power Sector Non-CHP
455 
Other values (10)
2256 

Length

Max length29
Median length27
Mean length15.8684
Min length7

Characters and Unicode

Total characters79342
Distinct characters28
Distinct categories4 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowElectric Power
2nd rowElectric Power
3rd rowElectric Power
4th rowElectric Power
5th rowElectric Power

Common Values

ValueCountFrequency (%)
All Sectors719
14.4%
Electric Utility560
11.2%
IPP Non-CHP508
10.2%
Electric Power502
10.0%
Electric Power Sector Non-CHP455
9.1%
Independent Power Producers409
8.2%
All Industrial366
7.3%
All Commercial290
5.8%
Commercial CHP258
 
5.2%
IPP CHP243
 
4.9%
Other values (5)690
13.8%

Length

2022-11-17T14:34:11.163990image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
electric1517
13.5%
all1375
12.2%
power1366
12.1%
non-chp1332
11.8%
commercial783
6.9%
ipp751
6.7%
chp724
6.4%
industrial723
6.4%
sectors719
6.4%
utility560
 
5.0%
Other values (6)1427
12.7%

Most occurring characters

ValueCountFrequency (%)
e6560
 
8.3%
l6431
 
8.1%
r6381
 
8.0%
6277
 
7.9%
c5400
 
6.8%
P5333
 
6.7%
o5232
 
6.6%
t5041
 
6.4%
i4283
 
5.4%
n3436
 
4.3%
Other values (18)24968
31.5%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter53510
67.4%
Uppercase Letter18223
 
23.0%
Space Separator6277
 
7.9%
Dash Punctuation1332
 
1.7%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
e6560
12.3%
l6431
12.0%
r6381
11.9%
c5400
10.1%
o5232
9.8%
t5041
9.4%
i4283
8.0%
n3436
6.4%
d1992
 
3.7%
s1949
 
3.6%
Other values (6)6805
12.7%
Uppercase Letter
ValueCountFrequency (%)
P5333
29.3%
C2951
16.2%
H2056
 
11.3%
I1883
 
10.3%
E1517
 
8.3%
A1375
 
7.5%
N1332
 
7.3%
S1174
 
6.4%
U560
 
3.1%
R42
 
0.2%
Space Separator
ValueCountFrequency (%)
6277
100.0%
Dash Punctuation
ValueCountFrequency (%)
-1332
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin71733
90.4%
Common7609
 
9.6%

Most frequent character per script

Latin
ValueCountFrequency (%)
e6560
 
9.1%
l6431
 
9.0%
r6381
 
8.9%
c5400
 
7.5%
P5333
 
7.4%
o5232
 
7.3%
t5041
 
7.0%
i4283
 
6.0%
n3436
 
4.8%
C2951
 
4.1%
Other values (16)20685
28.8%
Common
ValueCountFrequency (%)
6277
82.5%
-1332
 
17.5%

Most occurring blocks

ValueCountFrequency (%)
ASCII79342
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
e6560
 
8.3%
l6431
 
8.1%
r6381
 
8.0%
6277
 
7.9%
c5400
 
6.8%
P5333
 
6.7%
o5232
 
6.6%
t5041
 
6.4%
i4283
 
5.4%
n3436
 
4.3%
Other values (18)24968
31.5%

fueltypeid
Categorical

HIGH CORRELATION

Distinct44
Distinct (%)0.9%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
ALL
 
230
FOS
 
206
REN
 
204
NGO
 
201
NG
 
199
Other values (39)
3960 

Length

Max length3
Median length3
Mean length2.9396
Min length2

Characters and Unicode

Total characters14698
Distinct characters22
Distinct categories2 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowAOR
2nd rowBIO
3rd rowCOL
4th rowCOW
5th rowDFO

Common Values

ValueCountFrequency (%)
ALL230
 
4.6%
FOS206
 
4.1%
REN204
 
4.1%
NGO201
 
4.0%
NG199
 
4.0%
AOR198
 
4.0%
PEL194
 
3.9%
PET192
 
3.8%
DFO182
 
3.6%
BIO164
 
3.3%
Other values (34)3030
60.6%

Length

2022-11-17T14:34:11.280379image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
all230
 
4.6%
fos206
 
4.1%
ren204
 
4.1%
ngo201
 
4.0%
ng199
 
4.0%
aor198
 
4.0%
pel194
 
3.9%
pet192
 
3.8%
dfo182
 
3.6%
bio164
 
3.3%
Other values (34)3030
60.6%

Most occurring characters

ValueCountFrequency (%)
O2115
14.4%
N1164
 
7.9%
W1157
 
7.9%
S1069
 
7.3%
L1036
 
7.0%
P833
 
5.7%
T763
 
5.2%
G737
 
5.0%
B704
 
4.8%
R660
 
4.5%
Other values (12)4460
30.3%

Most occurring categories

ValueCountFrequency (%)
Uppercase Letter14586
99.2%
Decimal Number112
 
0.8%

Most frequent character per category

Uppercase Letter
ValueCountFrequency (%)
O2115
14.5%
N1164
 
8.0%
W1157
 
7.9%
S1069
 
7.3%
L1036
 
7.1%
P833
 
5.7%
T763
 
5.2%
G737
 
5.1%
B704
 
4.8%
R660
 
4.5%
Other values (11)4348
29.8%
Decimal Number
ValueCountFrequency (%)
2112
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin14586
99.2%
Common112
 
0.8%

Most frequent character per script

Latin
ValueCountFrequency (%)
O2115
14.5%
N1164
 
8.0%
W1157
 
7.9%
S1069
 
7.3%
L1036
 
7.1%
P833
 
5.7%
T763
 
5.2%
G737
 
5.1%
B704
 
4.8%
R660
 
4.5%
Other values (11)4348
29.8%
Common
ValueCountFrequency (%)
2112
100.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII14698
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
O2115
14.4%
N1164
 
7.9%
W1157
 
7.9%
S1069
 
7.3%
L1036
 
7.0%
P833
 
5.7%
T763
 
5.2%
G737
 
5.0%
B704
 
4.8%
R660
 
4.5%
Other values (12)4460
30.3%

fuelTypeDescription
Categorical

HIGH CORRELATION

Distinct42
Distinct (%)0.8%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
biomass
394 
all fuels
 
230
fossil fuels
 
206
renewable
 
204
natural gas & other gases
 
201
Other values (37)
3765 

Length

Max length40
Median length24
Mean length15.908
Min length4

Characters and Unicode

Total characters79540
Distinct characters28
Distinct categories4 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowall renewables
2nd rowbiomass
3rd rowcoal, excluding waste coal
4th rowall coal products
5th rowdistillate fuel oil

Common Values

ValueCountFrequency (%)
biomass394
 
7.9%
all fuels230
 
4.6%
fossil fuels206
 
4.1%
renewable204
 
4.1%
natural gas & other gases201
 
4.0%
natural gas199
 
4.0%
all renewables198
 
4.0%
petroleum liquids194
 
3.9%
petroleum192
 
3.8%
distillate fuel oil182
 
3.6%
Other values (32)2800
56.0%

Length

2022-11-17T14:34:11.418122image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
coal832
 
7.1%
gas636
 
5.4%
solar630
 
5.3%
other600
 
5.1%
all548
 
4.6%
petroleum440
 
3.7%
waste438
 
3.7%
fuels436
 
3.7%
natural400
 
3.4%
biomass394
 
3.3%
Other values (44)6445
54.6%

Most occurring characters

ValueCountFrequency (%)
l8349
10.5%
a7537
 
9.5%
e7264
 
9.1%
6799
 
8.5%
o6578
 
8.3%
s6328
 
8.0%
t5280
 
6.6%
i4718
 
5.9%
r3862
 
4.9%
u3260
 
4.1%
Other values (18)19565
24.6%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter72377
91.0%
Space Separator6799
 
8.5%
Other Punctuation322
 
0.4%
Dash Punctuation42
 
0.1%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
l8349
11.5%
a7537
10.4%
e7264
10.0%
o6578
9.1%
s6328
 
8.7%
t5280
 
7.3%
i4718
 
6.5%
r3862
 
5.3%
u3260
 
4.5%
n3227
 
4.5%
Other values (14)15974
22.1%
Other Punctuation
ValueCountFrequency (%)
&201
62.4%
,121
37.6%
Space Separator
ValueCountFrequency (%)
6799
100.0%
Dash Punctuation
ValueCountFrequency (%)
-42
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin72377
91.0%
Common7163
 
9.0%

Most frequent character per script

Latin
ValueCountFrequency (%)
l8349
11.5%
a7537
10.4%
e7264
10.0%
o6578
9.1%
s6328
 
8.7%
t5280
 
7.3%
i4718
 
6.5%
r3862
 
5.3%
u3260
 
4.5%
n3227
 
4.5%
Other values (14)15974
22.1%
Common
ValueCountFrequency (%)
6799
94.9%
&201
 
2.8%
,121
 
1.7%
-42
 
0.6%

Most occurring blocks

ValueCountFrequency (%)
ASCII79540
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
l8349
10.5%
a7537
 
9.5%
e7264
 
9.1%
6799
 
8.5%
o6578
 
8.3%
s6328
 
8.0%
t5280
 
6.6%
i4718
 
5.9%
r3862
 
4.9%
u3260
 
4.1%
Other values (18)19565
24.6%

generation
Real number (ℝ)

HIGH CORRELATION
MISSING
SKEWED
ZEROS

Distinct1969
Distinct (%)43.8%
Missing502
Missing (%)10.0%
Infinite0
Infinite (%)0.0%
Mean1505.740881
Minimum-493.31
Maximum378966.7023
Zeros684
Zeros (%)13.7%
Negative64
Negative (%)1.3%
Memory size39.2 KiB
2022-11-17T14:34:11.576334image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum-493.31
5-th percentile0
Q11.005
median21.27886
Q3312.38666
95-th percentile6606.61323
Maximum378966.7023
Range379460.0123
Interquartile range (IQR)311.38166

Descriptive statistics

Standard deviation9328.222315
Coefficient of variation (CV)6.195104636
Kurtosis742.6162863
Mean1505.740881
Median Absolute Deviation (MAD)21.27886
Skewness22.9144148
Sum6772822.484
Variance87015731.55
MonotonicityNot monotonic
2022-11-17T14:34:11.733618image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
0684
 
13.7%
284.17620
 
0.4%
3.0836719
 
0.4%
6.7183918
 
0.4%
5.2527517
 
0.3%
23.8693516
 
0.3%
1.1433614
 
0.3%
5.2856714
 
0.3%
1.7997813
 
0.3%
0.00113
 
0.3%
Other values (1959)3670
73.4%
(Missing)502
 
10.0%
ValueCountFrequency (%)
-493.311
 
< 0.1%
-321.9821
 
< 0.1%
-116.3142
 
< 0.1%
-56.0331
 
< 0.1%
-52.945
0.1%
-45.9264
0.1%
-45.54
0.1%
-36.4571
 
< 0.1%
-28.6691
 
< 0.1%
-5.7231
 
< 0.1%
ValueCountFrequency (%)
378966.70231
< 0.1%
228579.03331
< 0.1%
186742.12651
< 0.1%
137288.50431
< 0.1%
136317.10321
< 0.1%
128305.76951
< 0.1%
87505.587331
< 0.1%
86862.24011
< 0.1%
79286.829341
< 0.1%
70576.8751
< 0.1%

generation-units
Categorical

CONSTANT
HIGH CORRELATION
REJECTED

Distinct1
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
thousand megawatthours
5000 

Length

Max length22
Median length22
Mean length22
Min length22

Characters and Unicode

Total characters110000
Distinct characters14
Distinct categories2 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowthousand megawatthours
2nd rowthousand megawatthours
3rd rowthousand megawatthours
4th rowthousand megawatthours
5th rowthousand megawatthours

Common Values

ValueCountFrequency (%)
thousand megawatthours5000
100.0%

Length

2022-11-17T14:34:11.875788image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-11-17T14:34:11.985255image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
ValueCountFrequency (%)
thousand5000
50.0%
megawatthours5000
50.0%

Most occurring characters

ValueCountFrequency (%)
t15000
13.6%
a15000
13.6%
h10000
9.1%
o10000
9.1%
u10000
9.1%
s10000
9.1%
n5000
 
4.5%
d5000
 
4.5%
5000
 
4.5%
m5000
 
4.5%
Other values (4)20000
18.2%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter105000
95.5%
Space Separator5000
 
4.5%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
t15000
14.3%
a15000
14.3%
h10000
9.5%
o10000
9.5%
u10000
9.5%
s10000
9.5%
n5000
 
4.8%
d5000
 
4.8%
m5000
 
4.8%
e5000
 
4.8%
Other values (3)15000
14.3%
Space Separator
ValueCountFrequency (%)
5000
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin105000
95.5%
Common5000
 
4.5%

Most frequent character per script

Latin
ValueCountFrequency (%)
t15000
14.3%
a15000
14.3%
h10000
9.5%
o10000
9.5%
u10000
9.5%
s10000
9.5%
n5000
 
4.8%
d5000
 
4.8%
m5000
 
4.8%
e5000
 
4.8%
Other values (3)15000
14.3%
Common
ValueCountFrequency (%)
5000
100.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII110000
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
t15000
13.6%
a15000
13.6%
h10000
9.1%
o10000
9.1%
u10000
9.1%
s10000
9.1%
n5000
 
4.5%
d5000
 
4.5%
5000
 
4.5%
m5000
 
4.5%
Other values (4)20000
18.2%

total-consumption
Real number (ℝ≥0)

HIGH CORRELATION
MISSING
SKEWED
ZEROS

Distinct928
Distinct (%)21.2%
Missing623
Missing (%)12.5%
Infinite0
Infinite (%)0.0%
Mean2712.5538
Minimum0
Maximum1200476.741
Zeros2449
Zeros (%)49.0%
Negative0
Negative (%)0.0%
Memory size39.2 KiB
2022-11-17T14:34:12.102009image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median0
Q385.922
95-th percentile4690.129
Maximum1200476.741
Range1200476.741
Interquartile range (IQR)85.922

Descriptive statistics

Standard deviation29195.77343
Coefficient of variation (CV)10.7632053
Kurtosis1155.412575
Mean2712.5538
Median Absolute Deviation (MAD)0
Skewness30.73579515
Sum11872847.98
Variance852393186
MonotonicityNot monotonic
2022-11-17T14:34:12.276402image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
02449
49.0%
143.67420
 
0.4%
0.01414
 
0.3%
160.81913
 
0.3%
81.5513
 
0.3%
125.48212
 
0.2%
0.34312
 
0.2%
0.00212
 
0.2%
26.78811
 
0.2%
73.70510
 
0.2%
Other values (918)1811
36.2%
(Missing)623
 
12.5%
ValueCountFrequency (%)
02449
49.0%
0.0016
 
0.1%
0.00212
 
0.2%
0.0051
 
< 0.1%
0.0061
 
< 0.1%
0.0086
 
0.1%
0.0123
 
0.1%
0.01414
 
0.3%
0.0183
 
0.1%
0.022
 
< 0.1%
ValueCountFrequency (%)
1200476.7411
< 0.1%
1114612.5271
< 0.1%
517549.8291
< 0.1%
239806.2071
< 0.1%
239045.71
< 0.1%
229371.5022
< 0.1%
207961.6411
< 0.1%
199114.3331
< 0.1%
183538.9512
< 0.1%
162113.3971
< 0.1%

total-consumption-units
Categorical

HIGH CORRELATION

Distinct4
Distinct (%)0.1%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
thousand physical units
3117 
thousand short tons
951 
thousand barrels
477 
thousand Mcf
455 

Length

Max length23
Median length23
Mean length20.5704
Min length12

Characters and Unicode

Total characters102852
Distinct characters19
Distinct categories3 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowthousand physical units
2nd rowthousand physical units
3rd rowthousand short tons
4th rowthousand short tons
5th rowthousand short tons

Common Values

ValueCountFrequency (%)
thousand physical units3117
62.3%
thousand short tons951
 
19.0%
thousand barrels477
 
9.5%
thousand Mcf455
 
9.1%

Length

2022-11-17T14:34:12.429854image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-11-17T14:34:12.559436image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
ValueCountFrequency (%)
thousand5000
35.5%
physical3117
22.2%
units3117
22.2%
short951
 
6.8%
tons951
 
6.8%
barrels477
 
3.4%
mcf455
 
3.2%

Most occurring characters

ValueCountFrequency (%)
s13613
13.2%
t10019
9.7%
n9068
8.8%
9068
8.8%
h9068
8.8%
a8594
8.4%
u8117
7.9%
o6902
6.7%
i6234
 
6.1%
d5000
 
4.9%
Other values (9)17169
16.7%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter93329
90.7%
Space Separator9068
 
8.8%
Uppercase Letter455
 
0.4%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
s13613
14.6%
t10019
10.7%
n9068
9.7%
h9068
9.7%
a8594
9.2%
u8117
8.7%
o6902
7.4%
i6234
6.7%
d5000
 
5.4%
l3594
 
3.9%
Other values (7)13120
14.1%
Space Separator
ValueCountFrequency (%)
9068
100.0%
Uppercase Letter
ValueCountFrequency (%)
M455
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin93784
91.2%
Common9068
 
8.8%

Most frequent character per script

Latin
ValueCountFrequency (%)
s13613
14.5%
t10019
10.7%
n9068
9.7%
h9068
9.7%
a8594
9.2%
u8117
8.7%
o6902
7.4%
i6234
6.6%
d5000
 
5.3%
l3594
 
3.8%
Other values (8)13575
14.5%
Common
ValueCountFrequency (%)
9068
100.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII102852
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
s13613
13.2%
t10019
9.7%
n9068
8.8%
9068
8.8%
h9068
8.8%
a8594
8.4%
u8117
7.9%
o6902
6.7%
i6234
 
6.1%
d5000
 
4.9%
Other values (9)17169
16.7%

consumption-for-eg
Real number (ℝ≥0)

HIGH CORRELATION
MISSING
SKEWED
ZEROS

Distinct919
Distinct (%)21.0%
Missing623
Missing (%)12.5%
Infinite0
Infinite (%)0.0%
Mean2450.317202
Minimum0
Maximum1023723.001
Zeros2455
Zeros (%)49.1%
Negative0
Negative (%)0.0%
Memory size39.2 KiB
2022-11-17T14:34:12.707798image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median0
Q369.35
95-th percentile3929.183
Maximum1023723.001
Range1023723.001
Interquartile range (IQR)69.35

Descriptive statistics

Standard deviation26191.68415
Coefficient of variation (CV)10.68909941
Kurtosis1053.317253
Mean2450.317202
Median Absolute Deviation (MAD)0
Skewness29.22453334
Sum10725038.39
Variance686004318.5
MonotonicityNot monotonic
2022-11-17T14:34:13.251590image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
02455
49.1%
143.67420
 
0.4%
0.01414
 
0.3%
81.5513
 
0.3%
160.81913
 
0.3%
0.03112
 
0.2%
125.48212
 
0.2%
5.22911
 
0.2%
0.00211
 
0.2%
0.03410
 
0.2%
Other values (909)1806
36.1%
(Missing)623
 
12.5%
ValueCountFrequency (%)
02455
49.1%
0.0011
 
< 0.1%
0.00211
 
0.2%
0.0055
 
0.1%
0.0065
 
0.1%
0.0072
 
< 0.1%
0.0086
 
0.1%
0.012
 
< 0.1%
0.0113
 
0.1%
0.01414
 
0.3%
ValueCountFrequency (%)
1023723.0011
< 0.1%
1002158.6921
< 0.1%
513694.031
< 0.1%
228225.9511
< 0.1%
228092.2211
< 0.1%
227941.3762
< 0.1%
182867.3432
< 0.1%
169711.6871
< 0.1%
167398.8741
< 0.1%
146233.2911
< 0.1%

consumption-for-eg-units
Categorical

HIGH CORRELATION

Distinct4
Distinct (%)0.1%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
thousand physical units
3117 
thousand short tons
951 
thousand barrels
477 
thousand Mcf
455 

Length

Max length23
Median length23
Mean length20.5704
Min length12

Characters and Unicode

Total characters102852
Distinct characters19
Distinct categories3 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowthousand physical units
2nd rowthousand physical units
3rd rowthousand short tons
4th rowthousand short tons
5th rowthousand short tons

Common Values

ValueCountFrequency (%)
thousand physical units3117
62.3%
thousand short tons951
 
19.0%
thousand barrels477
 
9.5%
thousand Mcf455
 
9.1%

Length

2022-11-17T14:34:13.396732image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-11-17T14:34:13.525987image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
ValueCountFrequency (%)
thousand5000
35.5%
physical3117
22.2%
units3117
22.2%
short951
 
6.8%
tons951
 
6.8%
barrels477
 
3.4%
mcf455
 
3.2%

Most occurring characters

ValueCountFrequency (%)
s13613
13.2%
t10019
9.7%
n9068
8.8%
9068
8.8%
h9068
8.8%
a8594
8.4%
u8117
7.9%
o6902
6.7%
i6234
 
6.1%
d5000
 
4.9%
Other values (9)17169
16.7%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter93329
90.7%
Space Separator9068
 
8.8%
Uppercase Letter455
 
0.4%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
s13613
14.6%
t10019
10.7%
n9068
9.7%
h9068
9.7%
a8594
9.2%
u8117
8.7%
o6902
7.4%
i6234
6.7%
d5000
 
5.4%
l3594
 
3.9%
Other values (7)13120
14.1%
Space Separator
ValueCountFrequency (%)
9068
100.0%
Uppercase Letter
ValueCountFrequency (%)
M455
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin93784
91.2%
Common9068
 
8.8%

Most frequent character per script

Latin
ValueCountFrequency (%)
s13613
14.5%
t10019
10.7%
n9068
9.7%
h9068
9.7%
a8594
9.2%
u8117
8.7%
o6902
7.4%
i6234
6.6%
d5000
 
5.3%
l3594
 
3.8%
Other values (8)13575
14.5%
Common
ValueCountFrequency (%)
9068
100.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII102852
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
s13613
13.2%
t10019
9.7%
n9068
8.8%
9068
8.8%
h9068
8.8%
a8594
8.4%
u8117
7.9%
o6902
6.7%
i6234
 
6.1%
d5000
 
4.9%
Other values (9)17169
16.7%

consumption-uto
Real number (ℝ≥0)

HIGH CORRELATION
MISSING
SKEWED
ZEROS

Distinct411
Distinct (%)9.4%
Missing623
Missing (%)12.5%
Infinite0
Infinite (%)0.0%
Mean262.1514606
Minimum0
Maximum176753.74
Zeros3375
Zeros (%)67.5%
Negative0
Negative (%)0.0%
Memory size39.2 KiB
2022-11-17T14:34:13.675492image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median0
Q30
95-th percentile346.005
Maximum176753.74
Range176753.74
Interquartile range (IQR)0

Descriptive statistics

Standard deviation3677.008207
Coefficient of variation (CV)14.02627397
Kurtosis1441.896359
Mean262.1514606
Median Absolute Deviation (MAD)0
Skewness34.29031446
Sum1147436.943
Variance13520389.36
MonotonicityNot monotonic
2022-11-17T14:34:13.832200image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
03375
67.5%
7.95313
 
0.3%
40.91212
 
0.2%
0.31212
 
0.2%
3.55812
 
0.2%
37.99312
 
0.2%
4.35512
 
0.2%
0.04111
 
0.2%
112.77811
 
0.2%
21.55911
 
0.2%
Other values (401)896
 
17.9%
(Missing)623
 
12.5%
ValueCountFrequency (%)
03375
67.5%
0.0017
 
0.1%
0.0021
 
< 0.1%
0.0063
 
0.1%
0.0073
 
0.1%
0.0092
 
< 0.1%
0.013
 
0.1%
0.0132
 
< 0.1%
0.0159
 
0.2%
0.0162
 
< 0.1%
ValueCountFrequency (%)
176753.741
< 0.1%
112453.8351
< 0.1%
64299.9051
< 0.1%
40282.691
< 0.1%
38249.9541
< 0.1%
31715.4591
< 0.1%
30632.3311
< 0.1%
29209.7891
< 0.1%
272261
< 0.1%
22061.2962
< 0.1%

consumption-uto-units
Categorical

HIGH CORRELATION

Distinct4
Distinct (%)0.1%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
thousand physical units
3117 
thousand short tons
951 
thousand barrels
477 
thousand Mcf
455 

Length

Max length23
Median length23
Mean length20.5704
Min length12

Characters and Unicode

Total characters102852
Distinct characters19
Distinct categories3 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowthousand physical units
2nd rowthousand physical units
3rd rowthousand short tons
4th rowthousand short tons
5th rowthousand short tons

Common Values

ValueCountFrequency (%)
thousand physical units3117
62.3%
thousand short tons951
 
19.0%
thousand barrels477
 
9.5%
thousand Mcf455
 
9.1%

Length

2022-11-17T14:34:13.979460image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-11-17T14:34:14.107644image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
ValueCountFrequency (%)
thousand5000
35.5%
physical3117
22.2%
units3117
22.2%
short951
 
6.8%
tons951
 
6.8%
barrels477
 
3.4%
mcf455
 
3.2%

Most occurring characters

ValueCountFrequency (%)
s13613
13.2%
t10019
9.7%
n9068
8.8%
9068
8.8%
h9068
8.8%
a8594
8.4%
u8117
7.9%
o6902
6.7%
i6234
 
6.1%
d5000
 
4.9%
Other values (9)17169
16.7%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter93329
90.7%
Space Separator9068
 
8.8%
Uppercase Letter455
 
0.4%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
s13613
14.6%
t10019
10.7%
n9068
9.7%
h9068
9.7%
a8594
9.2%
u8117
8.7%
o6902
7.4%
i6234
6.7%
d5000
 
5.4%
l3594
 
3.9%
Other values (7)13120
14.1%
Space Separator
ValueCountFrequency (%)
9068
100.0%
Uppercase Letter
ValueCountFrequency (%)
M455
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin93784
91.2%
Common9068
 
8.8%

Most frequent character per script

Latin
ValueCountFrequency (%)
s13613
14.5%
t10019
10.7%
n9068
9.7%
h9068
9.7%
a8594
9.2%
u8117
8.7%
o6902
7.4%
i6234
6.6%
d5000
 
5.3%
l3594
 
3.8%
Other values (8)13575
14.5%
Common
ValueCountFrequency (%)
9068
100.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII102852
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
s13613
13.2%
t10019
9.7%
n9068
8.8%
9068
8.8%
h9068
8.8%
a8594
8.4%
u8117
7.9%
o6902
6.7%
i6234
 
6.1%
d5000
 
4.9%
Other values (9)17169
16.7%

total-consumption-btu
Real number (ℝ≥0)

HIGH CORRELATION
MISSING
SKEWED
ZEROS

Distinct1844
Distinct (%)42.1%
Missing623
Missing (%)12.5%
Infinite0
Infinite (%)0.0%
Mean14.50350716
Minimum0
Maximum3700.69511
Zeros713
Zeros (%)14.3%
Negative0
Negative (%)0.0%
Memory size39.2 KiB
2022-11-17T14:34:14.251971image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10.00839
median0.29158
Q33.93595
95-th percentile62.13151
Maximum3700.69511
Range3700.69511
Interquartile range (IQR)3.92756

Descriptive statistics

Standard deviation90.09394357
Coefficient of variation (CV)6.211872933
Kurtosis775.0603341
Mean14.50350716
Median Absolute Deviation (MAD)0.29158
Skewness23.39351969
Sum63481.85085
Variance8116.918668
MonotonicityNot monotonic
2022-11-17T14:34:14.413327image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
0713
 
14.3%
7 × 10-522
 
0.4%
3.0889920
 
0.4%
0.0394719
 
0.4%
1 × 10-519
 
0.4%
0.0783218
 
0.4%
0.002817
 
0.3%
0.0607317
 
0.3%
0.2915816
 
0.3%
0.0612714
 
0.3%
Other values (1834)3502
70.0%
(Missing)623
 
12.5%
ValueCountFrequency (%)
0713
14.3%
1 × 10-519
 
0.4%
5 × 10-56
 
0.1%
6 × 10-52
 
< 0.1%
7 × 10-522
 
0.4%
0.00014
 
0.1%
0.000112
 
< 0.1%
0.000123
 
0.1%
0.000131
 
< 0.1%
0.000142
 
< 0.1%
ValueCountFrequency (%)
3700.695111
< 0.1%
2168.009371
< 0.1%
1762.256571
< 0.1%
1185.590151
< 0.1%
1173.512791
< 0.1%
1151.400971
< 0.1%
951.827081
< 0.1%
944.181781
< 0.1%
778.072181
< 0.1%
737.246041
< 0.1%

total-consumption-btu-units
Categorical

CONSTANT
HIGH CORRELATION
REJECTED

Distinct1
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
million MMBtu
5000 

Length

Max length13
Median length13
Mean length13
Min length13

Characters and Unicode

Total characters65000
Distinct characters10
Distinct categories3 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowmillion MMBtu
2nd rowmillion MMBtu
3rd rowmillion MMBtu
4th rowmillion MMBtu
5th rowmillion MMBtu

Common Values

ValueCountFrequency (%)
million MMBtu5000
100.0%

Length

2022-11-17T14:34:14.558852image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-11-17T14:34:14.672895image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
ValueCountFrequency (%)
million5000
50.0%
mmbtu5000
50.0%

Most occurring characters

ValueCountFrequency (%)
i10000
15.4%
l10000
15.4%
M10000
15.4%
m5000
7.7%
o5000
7.7%
n5000
7.7%
5000
7.7%
B5000
7.7%
t5000
7.7%
u5000
7.7%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter45000
69.2%
Uppercase Letter15000
 
23.1%
Space Separator5000
 
7.7%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
i10000
22.2%
l10000
22.2%
m5000
11.1%
o5000
11.1%
n5000
11.1%
t5000
11.1%
u5000
11.1%
Uppercase Letter
ValueCountFrequency (%)
M10000
66.7%
B5000
33.3%
Space Separator
ValueCountFrequency (%)
5000
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin60000
92.3%
Common5000
 
7.7%

Most frequent character per script

Latin
ValueCountFrequency (%)
i10000
16.7%
l10000
16.7%
M10000
16.7%
m5000
8.3%
o5000
8.3%
n5000
8.3%
B5000
8.3%
t5000
8.3%
u5000
8.3%
Common
ValueCountFrequency (%)
5000
100.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII65000
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
i10000
15.4%
l10000
15.4%
M10000
15.4%
m5000
7.7%
o5000
7.7%
n5000
7.7%
5000
7.7%
B5000
7.7%
t5000
7.7%
u5000
7.7%

consumption-for-eg-btu
Real number (ℝ≥0)

HIGH CORRELATION
MISSING
SKEWED
ZEROS

Distinct1834
Distinct (%)41.9%
Missing623
Missing (%)12.5%
Infinite0
Infinite (%)0.0%
Mean13.72247551
Minimum0
Maximum3464.89228
Zeros720
Zeros (%)14.4%
Negative0
Negative (%)0.0%
Memory size39.2 KiB
2022-11-17T14:34:14.812607image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10.00455
median0.18406
Q33.08899
95-th percentile61.17745
Maximum3464.89228
Range3464.89228
Interquartile range (IQR)3.08444

Descriptive statistics

Standard deviation85.38831722
Coefficient of variation (CV)6.222515549
Kurtosis744.88318
Mean13.72247551
Median Absolute Deviation (MAD)0.18406
Skewness22.90084752
Sum60063.2753
Variance7291.164718
MonotonicityNot monotonic
2022-11-17T14:34:14.981803image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
0720
 
14.4%
3.0889920
 
0.4%
7 × 10-519
 
0.4%
0.0394719
 
0.4%
0.0783218
 
0.4%
0.0607317
 
0.3%
0.2915816
 
0.3%
0.0612714
 
0.3%
0.0681114
 
0.3%
0.0136113
 
0.3%
Other values (1824)3507
70.1%
(Missing)623
 
12.5%
ValueCountFrequency (%)
0720
14.4%
1 × 10-513
 
0.3%
3 × 10-53
 
0.1%
4 × 10-52
 
< 0.1%
5 × 10-57
 
0.1%
6 × 10-57
 
0.1%
7 × 10-519
 
0.4%
0.00014
 
0.1%
0.000112
 
< 0.1%
0.000124
 
0.1%
ValueCountFrequency (%)
3464.892281
< 0.1%
2009.662441
< 0.1%
1754.672781
< 0.1%
1178.257551
< 0.1%
1040.723781
< 0.1%
1035.445871
< 0.1%
930.50161
< 0.1%
923.150411
< 0.1%
737.246041
< 0.1%
703.118161
< 0.1%

consumption-for-eg-btu-units
Categorical

CONSTANT
HIGH CORRELATION
REJECTED

Distinct1
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
million MMBtu
5000 

Length

Max length13
Median length13
Mean length13
Min length13

Characters and Unicode

Total characters65000
Distinct characters10
Distinct categories3 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowmillion MMBtu
2nd rowmillion MMBtu
3rd rowmillion MMBtu
4th rowmillion MMBtu
5th rowmillion MMBtu

Common Values

ValueCountFrequency (%)
million MMBtu5000
100.0%

Length

2022-11-17T14:34:15.130297image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-11-17T14:34:15.250719image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
ValueCountFrequency (%)
million5000
50.0%
mmbtu5000
50.0%

Most occurring characters

ValueCountFrequency (%)
i10000
15.4%
l10000
15.4%
M10000
15.4%
m5000
7.7%
o5000
7.7%
n5000
7.7%
5000
7.7%
B5000
7.7%
t5000
7.7%
u5000
7.7%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter45000
69.2%
Uppercase Letter15000
 
23.1%
Space Separator5000
 
7.7%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
i10000
22.2%
l10000
22.2%
m5000
11.1%
o5000
11.1%
n5000
11.1%
t5000
11.1%
u5000
11.1%
Uppercase Letter
ValueCountFrequency (%)
M10000
66.7%
B5000
33.3%
Space Separator
ValueCountFrequency (%)
5000
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin60000
92.3%
Common5000
 
7.7%

Most frequent character per script

Latin
ValueCountFrequency (%)
i10000
16.7%
l10000
16.7%
M10000
16.7%
m5000
8.3%
o5000
8.3%
n5000
8.3%
B5000
8.3%
t5000
8.3%
u5000
8.3%
Common
ValueCountFrequency (%)
5000
100.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII65000
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
i10000
15.4%
l10000
15.4%
M10000
15.4%
m5000
7.7%
o5000
7.7%
n5000
7.7%
5000
7.7%
B5000
7.7%
t5000
7.7%
u5000
7.7%

consumption-uto-btu
Real number (ℝ≥0)

HIGH CORRELATION
MISSING
SKEWED
ZEROS

Distinct586
Distinct (%)13.4%
Missing623
Missing (%)12.5%
Infinite0
Infinite (%)0.0%
Mean0.7810318095
Minimum0
Maximum235.80282
Zeros2849
Zeros (%)57.0%
Negative0
Negative (%)0.0%
Memory size39.2 KiB
2022-11-17T14:34:15.366802image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median0
Q30.04108
95-th percentile2.3824
Maximum235.80282
Range235.80282
Interquartile range (IQR)0.04108

Descriptive statistics

Standard deviation6.190254589
Coefficient of variation (CV)7.925739405
Kurtosis667.1339216
Mean0.7810318095
Median Absolute Deviation (MAD)0
Skewness22.41990393
Sum3418.57623
Variance38.31925187
MonotonicityNot monotonic
2022-11-17T14:34:15.528851image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
02849
57.0%
0.119723
 
0.5%
1 × 10-520
 
0.4%
0.2203520
 
0.4%
0.0696719
 
0.4%
0.0249618
 
0.4%
3 × 10-517
 
0.3%
0.0682514
 
0.3%
0.0009614
 
0.3%
0.3172513
 
0.3%
Other values (576)1370
27.4%
(Missing)623
 
12.5%
ValueCountFrequency (%)
02849
57.0%
1 × 10-520
 
0.4%
2 × 10-56
 
0.1%
3 × 10-517
 
0.3%
4 × 10-56
 
0.1%
5 × 10-52
 
< 0.1%
6 × 10-53
 
0.1%
8 × 10-52
 
< 0.1%
9 × 10-53
 
0.1%
0.00013
 
0.1%
ValueCountFrequency (%)
235.802821
 
< 0.1%
158.346921
 
< 0.1%
132.789011
 
< 0.1%
115.95511
 
< 0.1%
74.954023
0.1%
68.593671
 
< 0.1%
67.537771
 
< 0.1%
45.934291
 
< 0.1%
39.657671
 
< 0.1%
37.58651
 
< 0.1%

consumption-uto-btu-units
Categorical

CONSTANT
HIGH CORRELATION
REJECTED

Distinct1
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
million MMBtu
5000 

Length

Max length13
Median length13
Mean length13
Min length13

Characters and Unicode

Total characters65000
Distinct characters10
Distinct categories3 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowmillion MMBtu
2nd rowmillion MMBtu
3rd rowmillion MMBtu
4th rowmillion MMBtu
5th rowmillion MMBtu

Common Values

ValueCountFrequency (%)
million MMBtu5000
100.0%

Length

2022-11-17T14:34:15.665690image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-11-17T14:34:15.776289image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
ValueCountFrequency (%)
million5000
50.0%
mmbtu5000
50.0%

Most occurring characters

ValueCountFrequency (%)
i10000
15.4%
l10000
15.4%
M10000
15.4%
m5000
7.7%
o5000
7.7%
n5000
7.7%
5000
7.7%
B5000
7.7%
t5000
7.7%
u5000
7.7%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter45000
69.2%
Uppercase Letter15000
 
23.1%
Space Separator5000
 
7.7%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
i10000
22.2%
l10000
22.2%
m5000
11.1%
o5000
11.1%
n5000
11.1%
t5000
11.1%
u5000
11.1%
Uppercase Letter
ValueCountFrequency (%)
M10000
66.7%
B5000
33.3%
Space Separator
ValueCountFrequency (%)
5000
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin60000
92.3%
Common5000
 
7.7%

Most frequent character per script

Latin
ValueCountFrequency (%)
i10000
16.7%
l10000
16.7%
M10000
16.7%
m5000
8.3%
o5000
8.3%
n5000
8.3%
B5000
8.3%
t5000
8.3%
u5000
8.3%
Common
ValueCountFrequency (%)
5000
100.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII65000
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
i10000
15.4%
l10000
15.4%
M10000
15.4%
m5000
7.7%
o5000
7.7%
n5000
7.7%
5000
7.7%
B5000
7.7%
t5000
7.7%
u5000
7.7%

stocks
Real number (ℝ≥0)

HIGH CORRELATION
MISSING
ZEROS

Distinct194
Distinct (%)46.7%
Missing4585
Missing (%)91.7%
Infinite0
Infinite (%)0.0%
Mean2302.465472
Minimum0
Maximum113511.087
Zeros175
Zeros (%)3.5%
Negative0
Negative (%)0.0%
Memory size39.2 KiB
2022-11-17T14:34:15.895213image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median3.994
Q3181.5275
95-th percentile7854.5853
Maximum113511.087
Range113511.087
Interquartile range (IQR)181.5275

Descriptive statistics

Standard deviation11083.65396
Coefficient of variation (CV)4.813819833
Kurtosis51.84346889
Mean2302.465472
Median Absolute Deviation (MAD)3.994
Skewness6.897245344
Sum955523.171
Variance122847385
MonotonicityNot monotonic
2022-11-17T14:34:16.053188image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
0175
 
3.5%
10.074
 
0.1%
212.2714
 
0.1%
28.2464
 
0.1%
252.5414
 
0.1%
168.2943
 
0.1%
7.9743
 
0.1%
142.2683
 
0.1%
14.9333
 
0.1%
1516.1363
 
0.1%
Other values (184)209
 
4.2%
(Missing)4585
91.7%
ValueCountFrequency (%)
0175
3.5%
0.0542
 
< 0.1%
0.1572
 
< 0.1%
0.1761
 
< 0.1%
0.1771
 
< 0.1%
0.2281
 
< 0.1%
0.2441
 
< 0.1%
0.3271
 
< 0.1%
0.4061
 
< 0.1%
0.4091
 
< 0.1%
ValueCountFrequency (%)
113511.0871
< 0.1%
87890.4461
< 0.1%
87786.2341
< 0.1%
79487.0151
< 0.1%
63784.9862
< 0.1%
51144.9761
< 0.1%
51049.3861
< 0.1%
33948.3752
< 0.1%
21324.1042
< 0.1%
20000.5291
< 0.1%

stocks-units
Categorical

HIGH CORRELATION

Distinct4
Distinct (%)0.1%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
thousand physical units
3117 
thousand short tons
951 
thousand barrels
477 
thousand Mcf
455 

Length

Max length23
Median length23
Mean length20.5704
Min length12

Characters and Unicode

Total characters102852
Distinct characters19
Distinct categories3 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowthousand physical units
2nd rowthousand physical units
3rd rowthousand short tons
4th rowthousand short tons
5th rowthousand short tons

Common Values

ValueCountFrequency (%)
thousand physical units3117
62.3%
thousand short tons951
 
19.0%
thousand barrels477
 
9.5%
thousand Mcf455
 
9.1%

Length

2022-11-17T14:34:16.197662image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-11-17T14:34:16.325440image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
ValueCountFrequency (%)
thousand5000
35.5%
physical3117
22.2%
units3117
22.2%
short951
 
6.8%
tons951
 
6.8%
barrels477
 
3.4%
mcf455
 
3.2%

Most occurring characters

ValueCountFrequency (%)
s13613
13.2%
t10019
9.7%
n9068
8.8%
9068
8.8%
h9068
8.8%
a8594
8.4%
u8117
7.9%
o6902
6.7%
i6234
 
6.1%
d5000
 
4.9%
Other values (9)17169
16.7%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter93329
90.7%
Space Separator9068
 
8.8%
Uppercase Letter455
 
0.4%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
s13613
14.6%
t10019
10.7%
n9068
9.7%
h9068
9.7%
a8594
9.2%
u8117
8.7%
o6902
7.4%
i6234
6.7%
d5000
 
5.4%
l3594
 
3.9%
Other values (7)13120
14.1%
Space Separator
ValueCountFrequency (%)
9068
100.0%
Uppercase Letter
ValueCountFrequency (%)
M455
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin93784
91.2%
Common9068
 
8.8%

Most frequent character per script

Latin
ValueCountFrequency (%)
s13613
14.5%
t10019
10.7%
n9068
9.7%
h9068
9.7%
a8594
9.2%
u8117
8.7%
o6902
7.4%
i6234
6.6%
d5000
 
5.3%
l3594
 
3.8%
Other values (8)13575
14.5%
Common
ValueCountFrequency (%)
9068
100.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII102852
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
s13613
13.2%
t10019
9.7%
n9068
8.8%
9068
8.8%
h9068
8.8%
a8594
8.4%
u8117
7.9%
o6902
6.7%
i6234
 
6.1%
d5000
 
4.9%
Other values (9)17169
16.7%

receipts
Real number (ℝ≥0)

HIGH CORRELATION
MISSING
SKEWED
ZEROS

Distinct325
Distinct (%)6.9%
Missing296
Missing (%)5.9%
Infinite0
Infinite (%)0.0%
Mean2026.683126
Minimum0
Maximum926905.42
Zeros3812
Zeros (%)76.2%
Negative0
Negative (%)0.0%
Memory size39.2 KiB
2022-11-17T14:34:16.472288image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median0
Q30
95-th percentile2488.99825
Maximum926905.42
Range926905.42
Interquartile range (IQR)0

Descriptive statistics

Standard deviation23214.32048
Coefficient of variation (CV)11.45434142
Kurtosis1109.659581
Mean2026.683126
Median Absolute Deviation (MAD)0
Skewness29.87602857
Sum9533517.424
Variance538904675.5
MonotonicityNot monotonic
2022-11-17T14:34:16.629161image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
03812
76.2%
53.45722
 
0.4%
86.98820
 
0.4%
3.36314
 
0.3%
5.21612
 
0.2%
13.28312
 
0.2%
60.18611
 
0.2%
3671.06410
 
0.2%
12.499
 
0.2%
3.8749
 
0.2%
Other values (315)773
 
15.5%
(Missing)296
 
5.9%
ValueCountFrequency (%)
03812
76.2%
0.032
 
< 0.1%
0.1431
 
< 0.1%
0.183
 
0.1%
0.2321
 
< 0.1%
0.3571
 
< 0.1%
0.3623
 
0.1%
0.8696
 
0.1%
1.0483
 
0.1%
1.0821
 
< 0.1%
ValueCountFrequency (%)
926905.422
< 0.1%
448849.2261
< 0.1%
216155.6942
< 0.1%
215159.3622
< 0.1%
177744.072
< 0.1%
174164.4592
< 0.1%
141048.082
< 0.1%
114107.5212
< 0.1%
107187.8582
< 0.1%
105110.0352
< 0.1%

receipts-units
Categorical

HIGH CORRELATION

Distinct4
Distinct (%)0.1%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
thousand physical units
3117 
thousand short tons
951 
thousand barrels
477 
thousand Mcf
455 

Length

Max length23
Median length23
Mean length20.5704
Min length12

Characters and Unicode

Total characters102852
Distinct characters19
Distinct categories3 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowthousand physical units
2nd rowthousand physical units
3rd rowthousand short tons
4th rowthousand short tons
5th rowthousand short tons

Common Values

ValueCountFrequency (%)
thousand physical units3117
62.3%
thousand short tons951
 
19.0%
thousand barrels477
 
9.5%
thousand Mcf455
 
9.1%

Length

2022-11-17T14:34:16.768544image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-11-17T14:34:16.898873image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
ValueCountFrequency (%)
thousand5000
35.5%
physical3117
22.2%
units3117
22.2%
short951
 
6.8%
tons951
 
6.8%
barrels477
 
3.4%
mcf455
 
3.2%

Most occurring characters

ValueCountFrequency (%)
s13613
13.2%
t10019
9.7%
n9068
8.8%
9068
8.8%
h9068
8.8%
a8594
8.4%
u8117
7.9%
o6902
6.7%
i6234
 
6.1%
d5000
 
4.9%
Other values (9)17169
16.7%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter93329
90.7%
Space Separator9068
 
8.8%
Uppercase Letter455
 
0.4%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
s13613
14.6%
t10019
10.7%
n9068
9.7%
h9068
9.7%
a8594
9.2%
u8117
8.7%
o6902
7.4%
i6234
6.7%
d5000
 
5.4%
l3594
 
3.9%
Other values (7)13120
14.1%
Space Separator
ValueCountFrequency (%)
9068
100.0%
Uppercase Letter
ValueCountFrequency (%)
M455
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin93784
91.2%
Common9068
 
8.8%

Most frequent character per script

Latin
ValueCountFrequency (%)
s13613
14.5%
t10019
10.7%
n9068
9.7%
h9068
9.7%
a8594
9.2%
u8117
8.7%
o6902
7.4%
i6234
6.6%
d5000
 
5.3%
l3594
 
3.8%
Other values (8)13575
14.5%
Common
ValueCountFrequency (%)
9068
100.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII102852
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
s13613
13.2%
t10019
9.7%
n9068
8.8%
9068
8.8%
h9068
8.8%
a8594
8.4%
u8117
7.9%
o6902
6.7%
i6234
 
6.1%
d5000
 
4.9%
Other values (9)17169
16.7%

receipts-btu
Real number (ℝ≥0)

HIGH CORRELATION
MISSING
SKEWED
ZEROS

Distinct399
Distinct (%)8.5%
Missing296
Missing (%)5.9%
Infinite0
Infinite (%)0.0%
Mean5731.845309
Minimum0
Maximum1716383.163
Zeros3690
Zeros (%)73.8%
Negative0
Negative (%)0.0%
Memory size39.2 KiB
2022-11-17T14:34:17.047886image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median0
Q30
95-th percentile19290.6578
Maximum1716383.163
Range1716383.163
Interquartile range (IQR)0

Descriptive statistics

Standard deviation45486.72494
Coefficient of variation (CV)7.935790741
Kurtosis604.0411122
Mean5731.845309
Median Absolute Deviation (MAD)0
Skewness21.25369134
Sum26962600.33
Variance2069042145
MonotonicityNot monotonic
2022-11-17T14:34:17.208217image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
03690
73.8%
1870.24222
 
0.4%
1221.5598922
 
0.4%
3777.7192915
 
0.3%
80.71214
 
0.3%
81.369612
 
0.2%
13.28312
 
0.2%
1172.1825411
 
0.2%
22.600659
 
0.2%
73.515249
 
0.2%
Other values (389)888
 
17.8%
(Missing)296
 
5.9%
ValueCountFrequency (%)
03690
73.8%
0.51242
 
< 0.1%
0.580931
 
< 0.1%
0.894951
 
< 0.1%
1.0443
 
0.1%
1.547531
 
< 0.1%
2.099161
 
< 0.1%
2.128563
 
0.1%
5.04026
 
0.1%
6.07843
 
0.1%
ValueCountFrequency (%)
1716383.1631
< 0.1%
1029675.1781
< 0.1%
957433.66612
< 0.1%
740486.09431
< 0.1%
735327.38571
< 0.1%
552990.01791
< 0.1%
552911.20591
< 0.1%
463216.30391
< 0.1%
406806.41221
< 0.1%
402046.75031
< 0.1%

receipts-btu-units
Categorical

CONSTANT
HIGH CORRELATION
REJECTED

Distinct1
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
billion Btu
5000 

Length

Max length11
Median length11
Mean length11
Min length11

Characters and Unicode

Total characters55000
Distinct characters9
Distinct categories3 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowbillion Btu
2nd rowbillion Btu
3rd rowbillion Btu
4th rowbillion Btu
5th rowbillion Btu

Common Values

ValueCountFrequency (%)
billion Btu5000
100.0%

Length

2022-11-17T14:34:17.352085image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-11-17T14:34:17.462325image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
ValueCountFrequency (%)
billion5000
50.0%
btu5000
50.0%

Most occurring characters

ValueCountFrequency (%)
i10000
18.2%
l10000
18.2%
b5000
9.1%
o5000
9.1%
n5000
9.1%
5000
9.1%
B5000
9.1%
t5000
9.1%
u5000
9.1%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter45000
81.8%
Space Separator5000
 
9.1%
Uppercase Letter5000
 
9.1%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
i10000
22.2%
l10000
22.2%
b5000
11.1%
o5000
11.1%
n5000
11.1%
t5000
11.1%
u5000
11.1%
Space Separator
ValueCountFrequency (%)
5000
100.0%
Uppercase Letter
ValueCountFrequency (%)
B5000
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin50000
90.9%
Common5000
 
9.1%

Most frequent character per script

Latin
ValueCountFrequency (%)
i10000
20.0%
l10000
20.0%
b5000
10.0%
o5000
10.0%
n5000
10.0%
B5000
10.0%
t5000
10.0%
u5000
10.0%
Common
ValueCountFrequency (%)
5000
100.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII55000
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
i10000
18.2%
l10000
18.2%
b5000
9.1%
o5000
9.1%
n5000
9.1%
5000
9.1%
B5000
9.1%
t5000
9.1%
u5000
9.1%

cost
Real number (ℝ≥0)

HIGH CORRELATION
MISSING
ZEROS

Distinct125
Distinct (%)12.2%
Missing3978
Missing (%)79.6%
Infinite0
Infinite (%)0.0%
Mean10.31503914
Minimum0
Maximum168.73
Zeros810
Zeros (%)16.2%
Negative0
Negative (%)0.0%
Memory size39.2 KiB
2022-11-17T14:34:17.580532image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median0
Q30
95-th percentile93.8
Maximum168.73
Range168.73
Interquartile range (IQR)0

Descriptive statistics

Standard deviation27.09472334
Coefficient of variation (CV)2.626720362
Kurtosis7.624980478
Mean10.31503914
Median Absolute Deviation (MAD)0
Skewness2.886158942
Sum10541.97
Variance734.1240327
MonotonicityNot monotonic
2022-11-17T14:34:17.743556image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
0810
 
16.2%
5.114
 
0.1%
614
 
0.1%
38.484
 
0.1%
94.944
 
0.1%
6.584
 
0.1%
93.84
 
0.1%
42.613
 
0.1%
4.053
 
0.1%
99.783
 
0.1%
Other values (115)179
 
3.6%
(Missing)3978
79.6%
ValueCountFrequency (%)
0810
16.2%
3.321
 
< 0.1%
4.053
 
0.1%
4.172
 
< 0.1%
4.282
 
< 0.1%
4.442
 
< 0.1%
4.932
 
< 0.1%
4.941
 
< 0.1%
5.031
 
< 0.1%
5.041
 
< 0.1%
ValueCountFrequency (%)
168.731
 
< 0.1%
126.871
 
< 0.1%
124.73
0.1%
118.423
0.1%
118.13
0.1%
117.11
 
< 0.1%
115.411
 
< 0.1%
112.461
 
< 0.1%
110.633
0.1%
110.172
< 0.1%

cost-units
Categorical

HIGH CORRELATION

Distinct4
Distinct (%)0.1%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
dollars per physical units
3117 
dollars per short tons
951 
dollars per barrels
477 
dollars per Mcf
455 

Length

Max length26
Median length26
Mean length23.5704
Min length15

Characters and Unicode

Total characters117852
Distinct characters19
Distinct categories3 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowdollars per physical units
2nd rowdollars per physical units
3rd rowdollars per short tons
4th rowdollars per short tons
5th rowdollars per short tons

Common Values

ValueCountFrequency (%)
dollars per physical units3117
62.3%
dollars per short tons951
 
19.0%
dollars per barrels477
 
9.5%
dollars per Mcf455
 
9.1%

Length

2022-11-17T14:34:17.896182image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-11-17T14:34:18.025956image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
ValueCountFrequency (%)
dollars5000
26.2%
per5000
26.2%
physical3117
16.3%
units3117
16.3%
short951
 
5.0%
tons951
 
5.0%
barrels477
 
2.5%
mcf455
 
2.4%

Most occurring characters

ValueCountFrequency (%)
14068
11.9%
s13613
11.6%
l13594
11.5%
r11905
10.1%
a8594
 
7.3%
p8117
 
6.9%
o6902
 
5.9%
i6234
 
5.3%
e5477
 
4.6%
t5019
 
4.3%
Other values (9)24329
20.6%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter103329
87.7%
Space Separator14068
 
11.9%
Uppercase Letter455
 
0.4%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
s13613
13.2%
l13594
13.2%
r11905
11.5%
a8594
8.3%
p8117
7.9%
o6902
 
6.7%
i6234
 
6.0%
e5477
 
5.3%
t5019
 
4.9%
d5000
 
4.8%
Other values (7)18874
18.3%
Space Separator
ValueCountFrequency (%)
14068
100.0%
Uppercase Letter
ValueCountFrequency (%)
M455
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin103784
88.1%
Common14068
 
11.9%

Most frequent character per script

Latin
ValueCountFrequency (%)
s13613
13.1%
l13594
13.1%
r11905
11.5%
a8594
8.3%
p8117
7.8%
o6902
 
6.7%
i6234
 
6.0%
e5477
 
5.3%
t5019
 
4.8%
d5000
 
4.8%
Other values (8)19329
18.6%
Common
ValueCountFrequency (%)
14068
100.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII117852
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
14068
11.9%
s13613
11.6%
l13594
11.5%
r11905
10.1%
a8594
 
7.3%
p8117
 
6.9%
o6902
 
5.9%
i6234
 
5.3%
e5477
 
4.6%
t5019
 
4.3%
Other values (9)24329
20.6%

cost-per-btu
Real number (ℝ≥0)

HIGH CORRELATION
MISSING
ZEROS

Distinct141
Distinct (%)19.4%
Missing4274
Missing (%)85.5%
Infinite0
Infinite (%)0.0%
Mean2.336669559
Minimum0
Maximum22.142
Zeros497
Zeros (%)9.9%
Negative0
Negative (%)0.0%
Memory size39.2 KiB
2022-11-17T14:34:18.176849image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median0
Q32.150875
95-th percentile16.72625
Maximum22.142
Range22.142
Interquartile range (IQR)2.150875

Descriptive statistics

Standard deviation5.022055224
Coefficient of variation (CV)2.14923638
Kurtosis5.402728928
Mean2.336669559
Median Absolute Deviation (MAD)0
Skewness2.534970843
Sum1696.4221
Variance25.22103867
MonotonicityNot monotonic
2022-11-17T14:34:18.332565image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
0497
 
9.9%
6.584
 
0.1%
15.38474
 
0.1%
2.13464
 
0.1%
16.47644
 
0.1%
3.914
 
0.1%
6.45363
 
0.1%
6.87953
 
0.1%
16.63433
 
0.1%
20.58563
 
0.1%
Other values (131)197
 
3.9%
(Missing)4274
85.5%
ValueCountFrequency (%)
0497
9.9%
1.47932
 
< 0.1%
1.51841
 
< 0.1%
1.53972
 
< 0.1%
1.60752
 
< 0.1%
1.62562
 
< 0.1%
1.69121
 
< 0.1%
1.74741
 
< 0.1%
1.75421
 
< 0.1%
1.77342
 
< 0.1%
ValueCountFrequency (%)
22.1421
 
< 0.1%
21.53
0.1%
20.911
 
< 0.1%
20.58563
0.1%
20.27243
0.1%
19.94281
 
< 0.1%
19.52911
 
< 0.1%
19.23171
 
< 0.1%
19.0262
< 0.1%
18.84121
 
< 0.1%

cost-per-btu-units
Categorical

CONSTANT
HIGH CORRELATION
REJECTED

Distinct1
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
dollars per million Btu
5000 

Length

Max length23
Median length23
Mean length23
Min length23

Characters and Unicode

Total characters115000
Distinct characters15
Distinct categories3 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowdollars per million Btu
2nd rowdollars per million Btu
3rd rowdollars per million Btu
4th rowdollars per million Btu
5th rowdollars per million Btu

Common Values

ValueCountFrequency (%)
dollars per million Btu5000
100.0%

Length

2022-11-17T14:34:18.467061image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-11-17T14:34:18.578482image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
ValueCountFrequency (%)
dollars5000
25.0%
per5000
25.0%
million5000
25.0%
btu5000
25.0%

Most occurring characters

ValueCountFrequency (%)
l20000
17.4%
15000
13.0%
o10000
 
8.7%
r10000
 
8.7%
i10000
 
8.7%
d5000
 
4.3%
a5000
 
4.3%
s5000
 
4.3%
p5000
 
4.3%
e5000
 
4.3%
Other values (5)25000
21.7%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter95000
82.6%
Space Separator15000
 
13.0%
Uppercase Letter5000
 
4.3%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
l20000
21.1%
o10000
10.5%
r10000
10.5%
i10000
10.5%
d5000
 
5.3%
a5000
 
5.3%
s5000
 
5.3%
p5000
 
5.3%
e5000
 
5.3%
m5000
 
5.3%
Other values (3)15000
15.8%
Space Separator
ValueCountFrequency (%)
15000
100.0%
Uppercase Letter
ValueCountFrequency (%)
B5000
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin100000
87.0%
Common15000
 
13.0%

Most frequent character per script

Latin
ValueCountFrequency (%)
l20000
20.0%
o10000
10.0%
r10000
10.0%
i10000
10.0%
d5000
 
5.0%
a5000
 
5.0%
s5000
 
5.0%
p5000
 
5.0%
e5000
 
5.0%
m5000
 
5.0%
Other values (4)20000
20.0%
Common
ValueCountFrequency (%)
15000
100.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII115000
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
l20000
17.4%
15000
13.0%
o10000
 
8.7%
r10000
 
8.7%
i10000
 
8.7%
d5000
 
4.3%
a5000
 
4.3%
s5000
 
4.3%
p5000
 
4.3%
e5000
 
4.3%
Other values (5)25000
21.7%

sulfur-content
Real number (ℝ≥0)

HIGH CORRELATION
MISSING
ZEROS

Distinct108
Distinct (%)2.3%
Missing296
Missing (%)5.9%
Infinite0
Infinite (%)0.0%
Mean0.110369898
Minimum0
Maximum5.97
Zeros4124
Zeros (%)82.5%
Negative0
Negative (%)0.0%
Memory size39.2 KiB
2022-11-17T14:34:18.704886image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median0
Q30
95-th percentile0.56
Maximum5.97
Range5.97
Interquartile range (IQR)0

Descriptive statistics

Standard deviation0.4374718013
Coefficient of variation (CV)3.963687649
Kurtosis46.78806073
Mean0.110369898
Median Absolute Deviation (MAD)0
Skewness6.059612427
Sum519.18
Variance0.1913815769
MonotonicityNot monotonic
2022-11-17T14:34:18.870054image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
04124
82.5%
0.3635
 
0.7%
0.5631
 
0.6%
0.1625
 
0.5%
0.3125
 
0.5%
0.2322
 
0.4%
0.619
 
0.4%
0.3719
 
0.4%
0.4719
 
0.4%
0.3517
 
0.3%
Other values (98)368
 
7.4%
(Missing)296
 
5.9%
ValueCountFrequency (%)
04124
82.5%
0.011
 
< 0.1%
0.051
 
< 0.1%
0.062
 
< 0.1%
0.152
 
< 0.1%
0.1625
 
0.5%
0.183
 
0.1%
0.21
 
< 0.1%
0.214
 
0.1%
0.2215
 
0.3%
ValueCountFrequency (%)
5.972
< 0.1%
5.62
< 0.1%
5.041
 
< 0.1%
3.651
 
< 0.1%
3.53
0.1%
3.462
< 0.1%
3.351
 
< 0.1%
3.041
 
< 0.1%
3.012
< 0.1%
2.992
< 0.1%

sulfur-content-units
Categorical

CONSTANT
HIGH CORRELATION
REJECTED

Distinct1
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
percent
5000 

Length

Max length7
Median length7
Mean length7
Min length7

Characters and Unicode

Total characters35000
Distinct characters6
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowpercent
2nd rowpercent
3rd rowpercent
4th rowpercent
5th rowpercent

Common Values

ValueCountFrequency (%)
percent5000
100.0%

Length

2022-11-17T14:34:19.016804image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-11-17T14:34:19.127411image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
ValueCountFrequency (%)
percent5000
100.0%

Most occurring characters

ValueCountFrequency (%)
e10000
28.6%
p5000
14.3%
r5000
14.3%
c5000
14.3%
n5000
14.3%
t5000
14.3%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter35000
100.0%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
e10000
28.6%
p5000
14.3%
r5000
14.3%
c5000
14.3%
n5000
14.3%
t5000
14.3%

Most occurring scripts

ValueCountFrequency (%)
Latin35000
100.0%

Most frequent character per script

Latin
ValueCountFrequency (%)
e10000
28.6%
p5000
14.3%
r5000
14.3%
c5000
14.3%
n5000
14.3%
t5000
14.3%

Most occurring blocks

ValueCountFrequency (%)
ASCII35000
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
e10000
28.6%
p5000
14.3%
r5000
14.3%
c5000
14.3%
n5000
14.3%
t5000
14.3%

ash-content
Real number (ℝ≥0)

HIGH CORRELATION
MISSING
ZEROS

Distinct135
Distinct (%)2.9%
Missing296
Missing (%)5.9%
Infinite0
Infinite (%)0.0%
Mean0.9578210034
Minimum0
Maximum47.82
Zeros4198
Zeros (%)84.0%
Negative0
Negative (%)0.0%
Memory size39.2 KiB
2022-11-17T14:34:19.247238image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median0
Q30
95-th percentile8.4
Maximum47.82
Range47.82
Interquartile range (IQR)0

Descriptive statistics

Standard deviation3.321255951
Coefficient of variation (CV)3.467512134
Kurtosis56.09616618
Mean0.9578210034
Median Absolute Deviation (MAD)0
Skewness5.916554665
Sum4505.59
Variance11.03074109
MonotonicityNot monotonic
2022-11-17T14:34:19.420668image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
04198
84.0%
728
 
0.6%
8.128
 
0.6%
9.3827
 
0.5%
9.722
 
0.4%
5.814
 
0.3%
5.2112
 
0.2%
5.212
 
0.2%
6.3712
 
0.2%
7.9511
 
0.2%
Other values (125)340
 
6.8%
(Missing)296
 
5.9%
ValueCountFrequency (%)
04198
84.0%
0.261
 
< 0.1%
0.282
 
< 0.1%
0.34
 
0.1%
0.62
 
< 0.1%
1.221
 
< 0.1%
3.851
 
< 0.1%
4.651
 
< 0.1%
4.671
 
< 0.1%
4.721
 
< 0.1%
ValueCountFrequency (%)
47.821
< 0.1%
46.062
< 0.1%
45.261
< 0.1%
44.981
< 0.1%
42.81
< 0.1%
41.61
< 0.1%
37.381
< 0.1%
29.41
< 0.1%
28.891
< 0.1%
24.222
< 0.1%

ash-content-units
Categorical

CONSTANT
HIGH CORRELATION
REJECTED

Distinct1
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
percent
5000 

Length

Max length7
Median length7
Mean length7
Min length7

Characters and Unicode

Total characters35000
Distinct characters6
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowpercent
2nd rowpercent
3rd rowpercent
4th rowpercent
5th rowpercent

Common Values

ValueCountFrequency (%)
percent5000
100.0%

Length

2022-11-17T14:34:19.564578image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-11-17T14:34:19.679117image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
ValueCountFrequency (%)
percent5000
100.0%

Most occurring characters

ValueCountFrequency (%)
e10000
28.6%
p5000
14.3%
r5000
14.3%
c5000
14.3%
n5000
14.3%
t5000
14.3%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter35000
100.0%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
e10000
28.6%
p5000
14.3%
r5000
14.3%
c5000
14.3%
n5000
14.3%
t5000
14.3%

Most occurring scripts

ValueCountFrequency (%)
Latin35000
100.0%

Most frequent character per script

Latin
ValueCountFrequency (%)
e10000
28.6%
p5000
14.3%
r5000
14.3%
c5000
14.3%
n5000
14.3%
t5000
14.3%

Most occurring blocks

ValueCountFrequency (%)
ASCII35000
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
e10000
28.6%
p5000
14.3%
r5000
14.3%
c5000
14.3%
n5000
14.3%
t5000
14.3%

heat-content
Real number (ℝ≥0)

HIGH CORRELATION
MISSING
ZEROS

Distinct901
Distinct (%)19.2%
Missing296
Missing (%)5.9%
Infinite0
Infinite (%)0.0%
Mean3.505200787
Minimum0
Maximum34.18
Zeros2556
Zeros (%)51.1%
Negative0
Negative (%)0.0%
Memory size39.2 KiB
2022-11-17T14:34:19.801444image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median0
Q35.6052
95-th percentile20.197455
Maximum34.18
Range34.18
Interquartile range (IQR)5.6052

Descriptive statistics

Standard deviation6.491138629
Coefficient of variation (CV)1.851859287
Kurtosis3.711196369
Mean3.505200787
Median Absolute Deviation (MAD)0
Skewness2.132350499
Sum16488.4645
Variance42.1348807
MonotonicityNot monotonic
2022-11-17T14:34:19.970331image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
02556
51.1%
0.48442
 
0.8%
5.838
 
0.8%
22.85223
 
0.5%
21.520
 
0.4%
0.48718
 
0.4%
1517
 
0.3%
5.76217
 
0.3%
1.02917
 
0.3%
615
 
0.3%
Other values (891)1941
38.8%
(Missing)296
 
5.9%
ValueCountFrequency (%)
02556
51.1%
0.10721
 
< 0.1%
0.13611
 
< 0.1%
0.1543
 
0.1%
0.17241
 
< 0.1%
0.17591
 
< 0.1%
0.2541
 
< 0.1%
0.25751
 
< 0.1%
0.27171
 
< 0.1%
0.28151
 
< 0.1%
ValueCountFrequency (%)
34.182
< 0.1%
31.611
 
< 0.1%
30.7383
0.1%
30.3662
< 0.1%
301
 
< 0.1%
29.92512
< 0.1%
29.5211
 
< 0.1%
29.49211
 
< 0.1%
29.48051
 
< 0.1%
29.252
< 0.1%

heat-content-units
Categorical

HIGH CORRELATION

Distinct4
Distinct (%)0.1%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
Btu per physical units
3117 
Btu per short tons
951 
Btu per barrels
477 
Btu per Mcf
455 

Length

Max length22
Median length22
Mean length19.5704
Min length11

Characters and Unicode

Total characters97852
Distinct characters19
Distinct categories3 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowBtu per physical units
2nd rowBtu per physical units
3rd rowBtu per short tons
4th rowBtu per short tons
5th rowBtu per short tons

Common Values

ValueCountFrequency (%)
Btu per physical units3117
62.3%
Btu per short tons951
 
19.0%
Btu per barrels477
 
9.5%
Btu per Mcf455
 
9.1%

Length

2022-11-17T14:34:20.123008image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-11-17T14:34:20.259234image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
ValueCountFrequency (%)
btu5000
26.2%
per5000
26.2%
physical3117
16.3%
units3117
16.3%
short951
 
5.0%
tons951
 
5.0%
barrels477
 
2.5%
mcf455
 
2.4%

Most occurring characters

ValueCountFrequency (%)
14068
14.4%
t10019
10.2%
s8613
8.8%
u8117
 
8.3%
p8117
 
8.3%
r6905
 
7.1%
i6234
 
6.4%
e5477
 
5.6%
B5000
 
5.1%
h4068
 
4.2%
Other values (9)21234
21.7%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter78329
80.0%
Space Separator14068
 
14.4%
Uppercase Letter5455
 
5.6%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
t10019
12.8%
s8613
11.0%
u8117
10.4%
p8117
10.4%
r6905
8.8%
i6234
8.0%
e5477
7.0%
h4068
 
5.2%
n4068
 
5.2%
a3594
 
4.6%
Other values (6)13117
16.7%
Uppercase Letter
ValueCountFrequency (%)
B5000
91.7%
M455
 
8.3%
Space Separator
ValueCountFrequency (%)
14068
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin83784
85.6%
Common14068
 
14.4%

Most frequent character per script

Latin
ValueCountFrequency (%)
t10019
12.0%
s8613
10.3%
u8117
9.7%
p8117
9.7%
r6905
8.2%
i6234
 
7.4%
e5477
 
6.5%
B5000
 
6.0%
h4068
 
4.9%
n4068
 
4.9%
Other values (8)17166
20.5%
Common
ValueCountFrequency (%)
14068
100.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII97852
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
14068
14.4%
t10019
10.2%
s8613
8.8%
u8117
 
8.3%
p8117
 
8.3%
r6905
 
7.1%
i6234
 
6.4%
e5477
 
5.6%
B5000
 
5.1%
h4068
 
4.2%
Other values (9)21234
21.7%

Interactions

2022-11-17T14:34:05.301221image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:26.153828image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:28.417847image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:30.689935image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:33.094716image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:35.507216image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:37.826971image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:40.273430image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:43.851760image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:46.400413image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:48.782891image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:50.885094image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:53.372044image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:55.833529image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:58.170679image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:00.362024image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:02.995893image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:05.435745image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:26.283382image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:28.547730image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:30.827576image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:33.231498image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:35.639358image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:37.963589image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:40.409996image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:43.990587image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:46.557070image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:48.903890image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:51.012489image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:53.510329image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:55.964724image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:58.298206image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:00.494087image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:03.125062image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:05.570346image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:26.413632image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:28.677739image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:30.966247image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:33.365836image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:35.772559image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:38.102160image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:40.546341image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:44.133852image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:46.771823image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:49.026609image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:51.140187image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:53.649179image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:56.100217image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:58.424539image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:00.624330image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:03.256227image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:05.712847image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:26.550354image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:28.818817image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:31.113343image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:33.510101image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:35.914278image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:38.248218image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:40.697072image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:44.287100image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:46.917856image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:49.156945image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:51.525664image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:53.798657image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:56.250105image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:58.556498image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:00.763981image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:03.395467image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:05.855826image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:26.689895image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:28.955473image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:31.258015image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:33.653411image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:36.058254image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:38.395037image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:40.842861image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:44.437447image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:47.056162image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:49.285353image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:51.662967image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:53.944583image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:56.393292image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:58.690862image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:01.235837image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:03.532096image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:05.995398image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:26.824097image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:29.088846image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:31.398389image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:33.791688image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:36.194381image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:38.540719image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:40.983834image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:44.582708image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:47.188972image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:49.408176image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:51.796516image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:54.085765image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:56.526852image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:58.821137image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:01.374447image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:03.664413image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:06.139709image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:26.963117image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:29.228704image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:31.546774image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:33.936169image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:36.337967image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:38.697254image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:41.162121image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:44.749372image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:47.327151image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:49.537007image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:51.933763image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:54.232805image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:56.669290image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:58.955561image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:01.514254image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:03.803432image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:06.283909image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:27.102420image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:29.368265image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:31.695205image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:34.080707image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:36.479206image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:38.856323image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:41.316094image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:44.959632image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:47.463354image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:49.666336image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:52.072171image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:54.380766image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:56.812893image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:59.091984image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:01.655852image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:03.942061image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:06.428062image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:27.242700image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:29.507393image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:31.842323image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:34.225285image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:36.620704image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:39.021726image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:41.473374image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:45.112953image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:47.600544image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:49.796531image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:52.210251image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:54.531050image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:56.956742image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:59.224642image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:01.797962image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:04.081381image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:06.557300image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:27.367719image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:29.631783image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:31.975421image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:34.355901image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:36.751156image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:39.154096image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:41.614411image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:45.249340image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:47.722561image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:49.914664image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:52.333145image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:54.669866image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:57.090319image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:59.346722image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:01.925992image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:04.204757image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:06.681147image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:27.488450image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:29.754341image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:32.100295image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:34.481437image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:36.873768image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:39.284563image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:41.754581image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:45.385123image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:47.844603image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:50.035162image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:52.452793image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:54.826149image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:57.212834image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:59.457464image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:02.052077image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:04.324290image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:06.814068image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:27.611908image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:29.881035image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:32.234259image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:34.612474image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:37.004182image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:39.422511image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:41.901751image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:45.524444image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:47.992499image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:50.153203image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:52.576757image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:54.970296image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:57.342378image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:59.582072image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:02.179081image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:04.448266image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:06.958541image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:27.751956image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:30.022287image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:32.383965image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:34.801905image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:37.147529image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:39.570048image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:42.055962image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:45.676224image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:48.133315image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:50.286345image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:52.715744image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:55.128382image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:57.490060image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:59.720393image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:02.321311image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:04.589001image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:07.097369image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:27.886613image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:30.158188image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:32.538016image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:34.953566image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:37.286415image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:39.714185image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:42.205029image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:45.822677image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:48.268001image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:50.403685image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:52.850824image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:55.272757image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:57.630018image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:59.853339image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:02.461021image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:04.740061image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:07.226276image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:28.016360image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:30.287459image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:32.668282image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:35.088160image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:37.414844image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:39.846433image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:43.430412image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:45.963179image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:48.390865image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:50.515554image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:52.978038image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:55.407120image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:57.762325image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:59.978059image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:02.591435image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:04.887079image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:07.364662image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:28.150897image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:30.421599image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:32.811078image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:35.228176image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:37.553188image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:39.989997image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:43.571052image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:46.108893image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:48.521966image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:50.641682image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:53.109121image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:55.550199image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:57.902042image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:00.110023image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:02.726197image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:05.024629image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:07.499067image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:28.280468image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:30.551872image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:32.947523image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:35.363573image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:37.684948image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:40.128088image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:43.707020image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:46.249685image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:48.650243image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:50.760226image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:53.237547image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:55.689056image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:33:58.034366image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:00.233701image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:02.856621image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:34:05.163585image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Correlations

2022-11-17T14:34:20.440567image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Auto

The auto setting is an easily interpretable pairwise column metric of the following mapping: vartype-vartype : method, categorical-categorical : Cramer's V, numerical-categorical : Cramer's V (using a discretized numerical column), numerical-numerical : Spearman's ρ. This configuration uses the best suitable for each pair of columns.
2022-11-17T14:34:20.860379image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Spearman's ρ

The Spearman's rank correlation coefficient (ρ) is a measure of monotonic correlation between two variables, and is therefore better in catching nonlinear monotonic correlations than Pearson's r. It's value lies between -1 and +1, -1 indicating total negative monotonic correlation, 0 indicating no monotonic correlation and 1 indicating total positive monotonic correlation.

To calculate ρ for two variables X and Y, one divides the covariance of the rank variables of X and Y by the product of their standard deviations.
2022-11-17T14:34:21.117797image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Pearson's r

The Pearson's correlation coefficient (r) is a measure of linear correlation between two variables. It's value lies between -1 and +1, -1 indicating total negative linear correlation, 0 indicating no linear correlation and 1 indicating total positive linear correlation. Furthermore, r is invariant under separate changes in location and scale of the two variables, implying that for a linear function the angle to the x-axis does not affect r.

To calculate r for two variables X and Y, one divides the covariance of X and Y by the product of their standard deviations.
2022-11-17T14:34:21.381514image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Kendall's τ

Similarly to Spearman's rank correlation coefficient, the Kendall rank correlation coefficient (τ) measures ordinal association between two variables. It's value lies between -1 and +1, -1 indicating total negative correlation, 0 indicating no correlation and 1 indicating total positive correlation.

To calculate τ for two variables X and Y, one determines the number of concordant and discordant pairs of observations. τ is given by the number of concordant pairs minus the discordant pairs divided by the total number of pairs.
2022-11-17T14:34:21.648870image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Cramér's V (φc)

Cramér's V is an association measure for nominal random variables. The coefficient ranges from 0 to 1, with 0 indicating independence and 1 indicating perfect association. The empirical estimators used for Cramér's V have been proved to be biased, even for large samples. We use a bias-corrected measure that has been proposed by Bergsma in 2013 that can be found here.
2022-11-17T14:34:21.965937image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Phik (φk)

Phik (φk) is a new and practical correlation coefficient that works consistently between categorical, ordinal and interval variables, captures non-linear dependency and reverts to the Pearson correlation coefficient in case of a bivariate normal input distribution. There is extensive documentation available here.

Missing values

2022-11-17T14:34:07.827377image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
A simple visualization of nullity by column.
2022-11-17T14:34:09.048481image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Nullity matrix is a data-dense display which lets you quickly visually pick out patterns in data completion.
2022-11-17T14:34:09.490145image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
The correlation heatmap measures nullity correlation: how strongly the presence or absence of one variable affects the presence of another.
2022-11-17T14:34:09.878759image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
The dendrogram allows you to more fully correlate variable completion, revealing trends deeper than the pairwise ones visible in the correlation heatmap.

Sample

First rows

Unnamed: 0periodlocationstateDescriptionsectoridsectorDescriptionfueltypeidfuelTypeDescriptiongenerationgeneration-unitstotal-consumptiontotal-consumption-unitsconsumption-for-egconsumption-for-eg-unitsconsumption-utoconsumption-uto-unitstotal-consumption-btutotal-consumption-btu-unitsconsumption-for-eg-btuconsumption-for-eg-btu-unitsconsumption-uto-btuconsumption-uto-btu-unitsstocksstocks-unitsreceiptsreceipts-unitsreceipts-btureceipts-btu-unitscostcost-unitscost-per-btucost-per-btu-unitssulfur-contentsulfur-content-unitsash-contentash-content-unitsheat-contentheat-content-units
002021-06SDSouth Dakota98Electric PowerAORall renewables660.11939thousand megawatthours0.000thousand physical units0.000thousand physical units0.000thousand physical units5.79123million MMBtu5.79123million MMBtu0.00000million MMBtuNaNthousand physical units0.000thousand physical units0.00000billion BtuNaNdollars per physical unitsNaNdollars per million Btu0.00percent0.0percent0.0000Btu per physical units
112021-06SDSouth Dakota98Electric PowerBIObiomass0.00000thousand megawatthours0.000thousand physical units0.000thousand physical units0.000thousand physical units0.00000million MMBtu0.00000million MMBtu0.00000million MMBtuNaNthousand physical units0.000thousand physical units0.00000billion BtuNaNdollars per physical unitsNaNdollars per million Btu0.00percent0.0percent0.0000Btu per physical units
222021-06SDSouth Dakota98Electric PowerCOLcoal, excluding waste coal205.22798thousand megawatthours134.827thousand short tons128.908thousand short tons5.919thousand short tons2.21143million MMBtu2.11434million MMBtu0.09709million MMBtuNaNthousand short tons103.693thousand short tons1705.54246billion BtuNaNdollars per short tonsNaNdollars per million Btu0.84percent5.2percent16.4020Btu per short tons
332021-06SDSouth Dakota98Electric PowerCOWall coal products205.22798thousand megawatthours134.827thousand short tons128.908thousand short tons5.919thousand short tons2.21143million MMBtu2.11434million MMBtu0.09709million MMBtuNaNthousand short tons103.693thousand short tons1705.54246billion Btu30.02dollars per short tons1.825dollars per million Btu0.84percent5.2percent16.4020Btu per short tons
442021-06SDSouth Dakota98Electric PowerDFOdistillate fuel oilNaNthousand megawatthoursNaNthousand short tonsNaNthousand short tonsNaNthousand short tonsNaNmillion MMBtuNaNmillion MMBtuNaNmillion MMBtuNaNthousand short tons1.191thousand short tons7.14600billion BtuNaNdollars per short tonsNaNdollars per million Btu0.00percent0.0percent6.0000Btu per short tons
552021-06SDSouth Dakota98Electric PowerFOSfossil fuels377.34304thousand megawatthours0.000thousand physical units0.000thousand physical units0.000thousand physical units3.68633million MMBtu3.58921million MMBtu0.09712million MMBtuNaNthousand physical units0.000thousand physical units2074.31449billion BtuNaNdollars per physical unitsNaNdollars per million Btu0.84percent5.2percent0.0000Btu per physical units
662021-07WSCWest South Central2IPP Non-CHPBIObiomass38.23158thousand megawatthours827.170thousand physical units827.170thousand physical units0.000thousand physical units0.49172million MMBtu0.49172million MMBtu0.00000million MMBtuNaNthousand physical units0.000thousand physical units0.00000billion BtuNaNdollars per physical unitsNaNdollars per million Btu0.00percent0.0percent0.5945Btu per physical units
772021-07WSCWest South Central2IPP Non-CHPCOLcoal, excluding waste coal6850.71606thousand megawatthours4704.249thousand short tons4704.249thousand short tons0.000thousand short tons73.48206million MMBtu73.48206million MMBtu0.00000million MMBtuNaNthousand short tons3539.209thousand short tons55362.90043billion BtuNaNdollars per short tonsNaNdollars per million Btu0.50percent8.7percent15.6204Btu per short tons
882021-07WSCWest South Central2IPP Non-CHPCOWall coal products6850.71606thousand megawatthours4704.249thousand short tons4704.249thousand short tons0.000thousand short tons73.48206million MMBtu73.48206million MMBtu0.00000million MMBtuNaNthousand short tons3539.209thousand short tons55362.90043billion BtuNaNdollars per short tonsNaNdollars per million Btu0.50percent8.7percent15.6204Btu per short tons
992021-07WSCWest South Central2IPP Non-CHPDFOdistillate fuel oil0.51471thousand megawatthours0.966thousand short tons0.966thousand short tons0.000thousand short tons0.00562million MMBtu0.00562million MMBtu0.00000million MMBtuNaNthousand short tons1.048thousand short tons6.07840billion BtuNaNdollars per short tonsNaNdollars per million Btu0.00percent0.0percent5.8137Btu per short tons

Last rows

Unnamed: 0periodlocationstateDescriptionsectoridsectorDescriptionfueltypeidfuelTypeDescriptiongenerationgeneration-unitstotal-consumptiontotal-consumption-unitsconsumption-for-egconsumption-for-eg-unitsconsumption-utoconsumption-uto-unitstotal-consumption-btutotal-consumption-btu-unitsconsumption-for-eg-btuconsumption-for-eg-btu-unitsconsumption-uto-btuconsumption-uto-btu-unitsstocksstocks-unitsreceiptsreceipts-unitsreceipts-btureceipts-btu-unitscostcost-unitscost-per-btucost-per-btu-unitssulfur-contentsulfur-content-unitsash-contentash-content-unitsheat-contentheat-content-units
499049902021-10MDMaryland90Electric Power Sector Non-CHPOBWbiomass12.75888thousand megawatthours29.334thousand physical units29.334thousand physical units0.0thousand physical units0.22252million MMBtu0.22252million MMBtu0.0million MMBtuNaNthousand physical units0.000thousand physical units0.00000billion BtuNaNdollars per physical unitsNaNdollars per million Btu0.0percent0.0percent7.5856Btu per physical units
499149912021-10MDMaryland90Electric Power Sector Non-CHPORWother renewablesNaNthousand megawatthoursNaNthousand physical unitsNaNthousand physical unitsNaNthousand physical unitsNaNmillion MMBtuNaNmillion MMBtuNaNmillion MMBtuNaNthousand physical units0.000thousand physical units0.00000billion BtuNaNdollars per physical unitsNaNdollars per million Btu0.0percent0.0percent0.0000Btu per physical units
499249922021-10MDMaryland90Electric Power Sector Non-CHPOTHother15.29219thousand megawatthours19.446thousand physical units19.446thousand physical units0.0thousand physical units0.27159million MMBtu0.27159million MMBtu0.0million MMBtuNaNthousand physical units0.000thousand physical units0.00000billion BtuNaNdollars per physical unitsNaNdollars per million Btu0.0percent0.0percent13.9663Btu per physical units
499349932021-10MDMaryland90Electric Power Sector Non-CHPPELpetroleum liquids3.08829thousand megawatthours6.906thousand barrels6.906thousand barrels0.0thousand barrels0.04032million MMBtu0.04032million MMBtu0.0million MMBtu657.514thousand barrels13.489thousand barrels78.14038billion BtuNaNdollars per barrelsNaNdollars per million Btu0.0percent0.0percent5.8379Btu per barrels
499449942021-10MDMaryland90Electric Power Sector Non-CHPPETpetroleum3.08829thousand megawatthours6.906thousand barrels6.906thousand barrels0.0thousand barrels0.04032million MMBtu0.04032million MMBtu0.0million MMBtuNaNthousand barrels13.489thousand barrels78.14038billion BtuNaNdollars per barrelsNaNdollars per million Btu0.0percent0.0percent5.8379Btu per barrels
499549952021-10MDMaryland90Electric Power Sector Non-CHPRCrefined coal0.00000thousand megawatthours0.000thousand short tons0.000thousand short tons0.0thousand short tons0.00000million MMBtu0.00000million MMBtu0.0million MMBtuNaNthousand short tons0.000thousand short tons0.00000billion BtuNaNdollars per short tonsNaNdollars per million Btu0.0percent0.0percent0.0000Btu per short tons
499649962021-10MDMaryland90Electric Power Sector Non-CHPRENrenewable287.15675thousand megawatthours108.551thousand physical units108.551thousand physical units0.0thousand physical units2.63622million MMBtu2.63622million MMBtu0.0million MMBtuNaNthousand physical units0.000thousand physical units0.00000billion BtuNaNdollars per physical unitsNaNdollars per million Btu0.0percent0.0percent2.4031Btu per physical units
499749972021-10MDMaryland90Electric Power Sector Non-CHPRFOresidual fuel oilNaNthousand megawatthoursNaNthousand short tonsNaNthousand short tonsNaNthousand short tonsNaNmillion MMBtuNaNmillion MMBtuNaNmillion MMBtuNaNthousand short tons0.000thousand short tons0.00000billion BtuNaNdollars per short tonsNaNdollars per million Btu0.0percent0.0percent5.9700Btu per short tons
499849982021-10MDMaryland90Electric Power Sector Non-CHPSPVsolar photovoltaic50.84164thousand megawatthours0.000thousand physical units0.000thousand physical units0.0thousand physical units0.44603million MMBtu0.44603million MMBtu0.0million MMBtuNaNthousand physical units0.000thousand physical units0.00000billion BtuNaNdollars per physical unitsNaNdollars per million Btu0.0percent0.0percent0.0000Btu per physical units
499949992021-10MDMaryland90Electric Power Sector Non-CHPSUNsolar50.84164thousand megawatthours0.000thousand physical units0.000thousand physical units0.0thousand physical units0.44603million MMBtu0.44603million MMBtu0.0million MMBtuNaNthousand physical units0.000thousand physical units0.00000billion BtuNaNdollars per physical unitsNaNdollars per million Btu0.0percent0.0percent0.0000Btu per physical units