Overview

Dataset statistics

Number of variables37
Number of observations5000
Missing cells29983
Missing cells (%)16.2%
Duplicate rows0
Duplicate rows (%)0.0%
Total size in memory1.4 MiB
Average record size in memory296.0 B

Variable types

Numeric9
Categorical26
Unsupported2

Alerts

nameplate-capacity-mw-units has constant value "MW" Constant
net-summer-capacity-mw-units has constant value "MW" Constant
net-winter-capacity-mw-units has constant value "MW" Constant
planned-derate-summer-cap-mw-units has constant value "MW" Constant
planned-uprate-summer-cap-mw-units has constant value "MW" Constant
stateid has a high cardinality: 51 distinct values High cardinality
stateName has a high cardinality: 51 distinct values High cardinality
entityName has a high cardinality: 985 distinct values High cardinality
plantName has a high cardinality: 2011 distinct values High cardinality
generatorid has a high cardinality: 1541 distinct values High cardinality
unit has a high cardinality: 80 distinct values High cardinality
balancing-authority-name has a high cardinality: 52 distinct values High cardinality
operating-year-month has a high cardinality: 915 distinct values High cardinality
county has a high cardinality: 714 distinct values High cardinality
entityid is highly correlated with Unnamed: 0 and 17 other fieldsHigh correlation
plantid is highly correlated with stateid and 14 other fieldsHigh correlation
nameplate-capacity-mw is highly correlated with unit and 9 other fieldsHigh correlation
net-summer-capacity-mw is highly correlated with unit and 9 other fieldsHigh correlation
net-winter-capacity-mw is highly correlated with unit and 9 other fieldsHigh correlation
planned-uprate-summer-cap-mw is highly correlated with Unnamed: 0 and 17 other fieldsHigh correlation
planned-uprate-year-month is highly correlated with period and 17 other fieldsHigh correlation
energy_source_code is highly correlated with stateid and 21 other fieldsHigh correlation
planned-derate-summer-cap-mw-units is highly correlated with planned-uprate-year-month and 19 other fieldsHigh correlation
stateid is highly correlated with Unnamed: 0 and 18 other fieldsHigh correlation
stateName is highly correlated with Unnamed: 0 and 18 other fieldsHigh correlation
technology is highly correlated with period and 21 other fieldsHigh correlation
sector is highly correlated with stateid and 13 other fieldsHigh correlation
balancing-authority-name is highly correlated with Unnamed: 0 and 18 other fieldsHigh correlation
sectorName is highly correlated with stateid and 13 other fieldsHigh correlation
statusDescription is highly correlated with technology and 4 other fieldsHigh correlation
net-summer-capacity-mw-units is highly correlated with planned-uprate-year-month and 19 other fieldsHigh correlation
prime_mover_code is highly correlated with stateid and 17 other fieldsHigh correlation
planned-retirement-year-month is highly correlated with Unnamed: 0 and 20 other fieldsHigh correlation
period is highly correlated with Unnamed: 0 and 11 other fieldsHigh correlation
unit is highly correlated with Unnamed: 0 and 18 other fieldsHigh correlation
nameplate-capacity-mw-units is highly correlated with planned-uprate-year-month and 19 other fieldsHigh correlation
energy-source-desc is highly correlated with stateid and 21 other fieldsHigh correlation
planned-uprate-summer-cap-mw-units is highly correlated with planned-uprate-year-month and 19 other fieldsHigh correlation
net-winter-capacity-mw-units is highly correlated with planned-uprate-year-month and 19 other fieldsHigh correlation
status is highly correlated with technology and 4 other fieldsHigh correlation
balancing_authority_code is highly correlated with Unnamed: 0 and 18 other fieldsHigh correlation
Unnamed: 0 is highly correlated with period and 8 other fieldsHigh correlation
longitude is highly correlated with period and 11 other fieldsHigh correlation
latitude is highly correlated with stateid and 11 other fieldsHigh correlation
unit has 4542 (90.8%) missing values Missing
balancing_authority_code has 285 (5.7%) missing values Missing
balancing-authority-name has 277 (5.5%) missing values Missing
planned-retirement-year-month has 4882 (97.6%) missing values Missing
planned-derate-year-month has 5000 (100.0%) missing values Missing
planned-derate-summer-cap-mw has 5000 (100.0%) missing values Missing
planned-uprate-year-month has 4974 (99.5%) missing values Missing
planned-uprate-summer-cap-mw has 4974 (99.5%) missing values Missing
Unnamed: 0 is uniformly distributed Uniform
planned-uprate-year-month is uniformly distributed Uniform
Unnamed: 0 has unique values Unique
planned-derate-year-month is an unsupported type, check if it needs cleaning or further analysis Unsupported
planned-derate-summer-cap-mw is an unsupported type, check if it needs cleaning or further analysis Unsupported

Reproduction

Analysis started2022-11-17 22:35:04.700309
Analysis finished2022-11-17 22:35:24.750036
Duration20.05 seconds
Software versionpandas-profiling v3.4.0
Download configurationconfig.json

Variables

Unnamed: 0
Real number (ℝ≥0)

HIGH CORRELATION
UNIFORM
UNIQUE

Distinct5000
Distinct (%)100.0%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean2499.5
Minimum0
Maximum4999
Zeros1
Zeros (%)< 0.1%
Negative0
Negative (%)0.0%
Memory size39.2 KiB
2022-11-17T14:35:24.888785image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile249.95
Q11249.75
median2499.5
Q33749.25
95-th percentile4749.05
Maximum4999
Range4999
Interquartile range (IQR)2499.5

Descriptive statistics

Standard deviation1443.520003
Coefficient of variation (CV)0.577523506
Kurtosis-1.2
Mean2499.5
Median Absolute Deviation (MAD)1250
Skewness0
Sum12497500
Variance2083750
MonotonicityStrictly increasing
2022-11-17T14:35:25.062143image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
01
 
< 0.1%
33301
 
< 0.1%
33371
 
< 0.1%
33361
 
< 0.1%
33351
 
< 0.1%
33341
 
< 0.1%
33331
 
< 0.1%
33321
 
< 0.1%
33311
 
< 0.1%
33291
 
< 0.1%
Other values (4990)4990
99.8%
ValueCountFrequency (%)
01
< 0.1%
11
< 0.1%
21
< 0.1%
31
< 0.1%
41
< 0.1%
51
< 0.1%
61
< 0.1%
71
< 0.1%
81
< 0.1%
91
< 0.1%
ValueCountFrequency (%)
49991
< 0.1%
49981
< 0.1%
49971
< 0.1%
49961
< 0.1%
49951
< 0.1%
49941
< 0.1%
49931
< 0.1%
49921
< 0.1%
49911
< 0.1%
49901
< 0.1%

period
Categorical

HIGH CORRELATION

Distinct18
Distinct (%)0.4%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
2017-02
1791 
2017-03
981 
2017-09
429 
2017-01
388 
2020-06
369 
Other values (13)
1042 

Length

Max length7
Median length7
Mean length7
Min length7

Characters and Unicode

Total characters35000
Distinct characters11
Distinct categories2 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)< 0.1%

Sample

1st row2020-09
2nd row2020-09
3rd row2020-09
4th row2020-09
5th row2020-09

Common Values

ValueCountFrequency (%)
2017-021791
35.8%
2017-03981
19.6%
2017-09429
 
8.6%
2017-01388
 
7.8%
2020-06369
 
7.4%
2020-03233
 
4.7%
2020-05196
 
3.9%
2020-09179
 
3.6%
2020-04154
 
3.1%
2020-11112
 
2.2%
Other values (8)168
 
3.4%

Length

2022-11-17T14:35:25.202347image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
2017-021791
35.8%
2017-03981
19.6%
2017-09429
 
8.6%
2017-01388
 
7.8%
2020-06369
 
7.4%
2020-03233
 
4.7%
2020-05196
 
3.9%
2020-09179
 
3.6%
2020-04154
 
3.1%
2020-11112
 
2.2%
Other values (8)168
 
3.4%

Most occurring characters

ValueCountFrequency (%)
011165
31.9%
28097
23.1%
-5000
14.3%
14366
 
12.5%
73664
 
10.5%
31243
 
3.6%
9634
 
1.8%
6442
 
1.3%
5196
 
0.6%
4154
 
0.4%

Most occurring categories

ValueCountFrequency (%)
Decimal Number30000
85.7%
Dash Punctuation5000
 
14.3%

Most frequent character per category

Decimal Number
ValueCountFrequency (%)
011165
37.2%
28097
27.0%
14366
 
14.6%
73664
 
12.2%
31243
 
4.1%
9634
 
2.1%
6442
 
1.5%
5196
 
0.7%
4154
 
0.5%
839
 
0.1%
Dash Punctuation
ValueCountFrequency (%)
-5000
100.0%

Most occurring scripts

ValueCountFrequency (%)
Common35000
100.0%

Most frequent character per script

Common
ValueCountFrequency (%)
011165
31.9%
28097
23.1%
-5000
14.3%
14366
 
12.5%
73664
 
10.5%
31243
 
3.6%
9634
 
1.8%
6442
 
1.3%
5196
 
0.6%
4154
 
0.4%

Most occurring blocks

ValueCountFrequency (%)
ASCII35000
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
011165
31.9%
28097
23.1%
-5000
14.3%
14366
 
12.5%
73664
 
10.5%
31243
 
3.6%
9634
 
1.8%
6442
 
1.3%
5196
 
0.6%
4154
 
0.4%

stateid
Categorical

HIGH CARDINALITY
HIGH CORRELATION

Distinct51
Distinct (%)1.0%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
CA
741 
NY
336 
TX
 
266
NC
 
225
AK
 
221
Other values (46)
3211 

Length

Max length2
Median length2
Mean length2
Min length2

Characters and Unicode

Total characters10000
Distinct characters24
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)< 0.1%

Sample

1st rowTX
2nd rowTX
3rd rowTX
4th rowTX
5th rowNJ

Common Values

ValueCountFrequency (%)
CA741
 
14.8%
NY336
 
6.7%
TX266
 
5.3%
NC225
 
4.5%
AK221
 
4.4%
MN204
 
4.1%
MI196
 
3.9%
SC180
 
3.6%
KS150
 
3.0%
VA139
 
2.8%
Other values (41)2342
46.8%

Length

2022-11-17T14:35:25.316016image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
ca741
 
14.8%
ny336
 
6.7%
tx266
 
5.3%
nc225
 
4.5%
ak221
 
4.4%
mn204
 
4.1%
mi196
 
3.9%
sc180
 
3.6%
ks150
 
3.0%
va139
 
2.8%
Other values (41)2342
46.8%

Most occurring characters

ValueCountFrequency (%)
A1894
18.9%
C1238
12.4%
N1168
11.7%
M792
 
7.9%
I680
 
6.8%
T529
 
5.3%
K447
 
4.5%
S379
 
3.8%
O379
 
3.8%
Y355
 
3.5%
Other values (14)2139
21.4%

Most occurring categories

ValueCountFrequency (%)
Uppercase Letter10000
100.0%

Most frequent character per category

Uppercase Letter
ValueCountFrequency (%)
A1894
18.9%
C1238
12.4%
N1168
11.7%
M792
 
7.9%
I680
 
6.8%
T529
 
5.3%
K447
 
4.5%
S379
 
3.8%
O379
 
3.8%
Y355
 
3.5%
Other values (14)2139
21.4%

Most occurring scripts

ValueCountFrequency (%)
Latin10000
100.0%

Most frequent character per script

Latin
ValueCountFrequency (%)
A1894
18.9%
C1238
12.4%
N1168
11.7%
M792
 
7.9%
I680
 
6.8%
T529
 
5.3%
K447
 
4.5%
S379
 
3.8%
O379
 
3.8%
Y355
 
3.5%
Other values (14)2139
21.4%

Most occurring blocks

ValueCountFrequency (%)
ASCII10000
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
A1894
18.9%
C1238
12.4%
N1168
11.7%
M792
 
7.9%
I680
 
6.8%
T529
 
5.3%
K447
 
4.5%
S379
 
3.8%
O379
 
3.8%
Y355
 
3.5%
Other values (14)2139
21.4%

stateName
Categorical

HIGH CARDINALITY
HIGH CORRELATION

Distinct51
Distinct (%)1.0%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
California
741 
New York
336 
Texas
 
266
North Carolina
 
225
Alaska
 
221
Other values (46)
3211 

Length

Max length20
Median length13
Mean length8.57
Min length4

Characters and Unicode

Total characters42850
Distinct characters46
Distinct categories3 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)< 0.1%

Sample

1st rowTexas
2nd rowTexas
3rd rowTexas
4th rowTexas
5th rowNew Jersey

Common Values

ValueCountFrequency (%)
California741
 
14.8%
New York336
 
6.7%
Texas266
 
5.3%
North Carolina225
 
4.5%
Alaska221
 
4.4%
Minnesota204
 
4.1%
Michigan196
 
3.9%
South Carolina180
 
3.6%
Kansas150
 
3.0%
Virginia139
 
2.8%
Other values (41)2342
46.8%

Length

2022-11-17T14:35:25.451385image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
california741
 
12.4%
new479
 
8.0%
carolina405
 
6.8%
york336
 
5.6%
texas266
 
4.4%
north253
 
4.2%
alaska221
 
3.7%
south205
 
3.4%
minnesota204
 
3.4%
michigan196
 
3.3%
Other values (45)2677
44.7%

Most occurring characters

ValueCountFrequency (%)
a6103
14.2%
i4714
 
11.0%
n3750
 
8.8%
o3672
 
8.6%
s2900
 
6.8%
r2710
 
6.3%
e2375
 
5.5%
l1993
 
4.7%
t1244
 
2.9%
C1238
 
2.9%
Other values (36)12151
28.4%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter35885
83.7%
Uppercase Letter5982
 
14.0%
Space Separator983
 
2.3%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
a6103
17.0%
i4714
13.1%
n3750
10.5%
o3672
10.2%
s2900
8.1%
r2710
7.6%
e2375
 
6.6%
l1993
 
5.6%
t1244
 
3.5%
h1145
 
3.2%
Other values (14)5279
14.7%
Uppercase Letter
ValueCountFrequency (%)
C1238
20.7%
N792
13.2%
M792
13.2%
A403
 
6.7%
T395
 
6.6%
Y336
 
5.6%
I325
 
5.4%
W252
 
4.2%
V217
 
3.6%
O215
 
3.6%
Other values (11)1017
17.0%
Space Separator
ValueCountFrequency (%)
983
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin41867
97.7%
Common983
 
2.3%

Most frequent character per script

Latin
ValueCountFrequency (%)
a6103
14.6%
i4714
11.3%
n3750
 
9.0%
o3672
 
8.8%
s2900
 
6.9%
r2710
 
6.5%
e2375
 
5.7%
l1993
 
4.8%
t1244
 
3.0%
C1238
 
3.0%
Other values (35)11168
26.7%
Common
ValueCountFrequency (%)
983
100.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII42850
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
a6103
14.2%
i4714
 
11.0%
n3750
 
8.8%
o3672
 
8.6%
s2900
 
6.8%
r2710
 
6.3%
e2375
 
5.5%
l1993
 
4.7%
t1244
 
2.9%
C1238
 
2.9%
Other values (36)12151
28.4%

sector
Categorical

HIGH CORRELATION

Distinct7
Distinct (%)0.1%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
electric-utility
2419 
ipp-non-chp
1925 
industrial-chp
258 
commercial-chp
 
135
commercial-non-chp
 
124
Other values (2)
 
139

Length

Max length18
Median length16
Mean length13.7766
Min length7

Characters and Unicode

Total characters68883
Distinct characters17
Distinct categories2 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowipp-non-chp
2nd rowipp-non-chp
3rd rowipp-non-chp
4th rowipp-non-chp
5th rowipp-non-chp

Common Values

ValueCountFrequency (%)
electric-utility2419
48.4%
ipp-non-chp1925
38.5%
industrial-chp258
 
5.2%
commercial-chp135
 
2.7%
commercial-non-chp124
 
2.5%
ipp-chp112
 
2.2%
industrial-non-chp27
 
0.5%

Length

2022-11-17T14:35:25.590603image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-11-17T14:35:25.726844image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
ValueCountFrequency (%)
electric-utility2419
48.4%
ipp-non-chp1925
38.5%
industrial-chp258
 
5.2%
commercial-chp135
 
2.7%
commercial-non-chp124
 
2.5%
ipp-chp112
 
2.2%
industrial-non-chp27
 
0.5%

Most occurring characters

ValueCountFrequency (%)
i10123
14.7%
c7937
11.5%
t7542
10.9%
-7076
10.3%
p6655
9.7%
l5382
7.8%
e5097
7.4%
n4437
6.4%
r2963
 
4.3%
u2704
 
3.9%
Other values (7)8967
13.0%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter61807
89.7%
Dash Punctuation7076
 
10.3%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
i10123
16.4%
c7937
12.8%
t7542
12.2%
p6655
10.8%
l5382
8.7%
e5097
8.2%
n4437
7.2%
r2963
 
4.8%
u2704
 
4.4%
h2581
 
4.2%
Other values (6)6386
10.3%
Dash Punctuation
ValueCountFrequency (%)
-7076
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin61807
89.7%
Common7076
 
10.3%

Most frequent character per script

Latin
ValueCountFrequency (%)
i10123
16.4%
c7937
12.8%
t7542
12.2%
p6655
10.8%
l5382
8.7%
e5097
8.2%
n4437
7.2%
r2963
 
4.8%
u2704
 
4.4%
h2581
 
4.2%
Other values (6)6386
10.3%
Common
ValueCountFrequency (%)
-7076
100.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII68883
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
i10123
14.7%
c7937
11.5%
t7542
10.9%
-7076
10.3%
p6655
9.7%
l5382
7.8%
e5097
7.4%
n4437
6.4%
r2963
 
4.3%
u2704
 
3.9%
Other values (7)8967
13.0%

sectorName
Categorical

HIGH CORRELATION

Distinct7
Distinct (%)0.1%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
Electric Utility
2419 
IPP Non-CHP
1925 
Industrial CHP
258 
Commercial CHP
 
135
Commercial Non-CHP
 
124
Other values (2)
 
139

Length

Max length18
Median length16
Mean length13.7766
Min length7

Characters and Unicode

Total characters68883
Distinct characters23
Distinct categories4 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowIPP Non-CHP
2nd rowIPP Non-CHP
3rd rowIPP Non-CHP
4th rowIPP Non-CHP
5th rowIPP Non-CHP

Common Values

ValueCountFrequency (%)
Electric Utility2419
48.4%
IPP Non-CHP1925
38.5%
Industrial CHP258
 
5.2%
Commercial CHP135
 
2.7%
Commercial Non-CHP124
 
2.5%
IPP CHP112
 
2.2%
Industrial Non-CHP27
 
0.5%

Length

2022-11-17T14:35:25.863672image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-11-17T14:35:26.017431image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
ValueCountFrequency (%)
electric2419
24.2%
utility2419
24.2%
non-chp2076
20.8%
ipp2037
20.4%
chp505
 
5.1%
industrial285
 
2.9%
commercial259
 
2.6%

Most occurring characters

ValueCountFrequency (%)
i7801
 
11.3%
t7542
 
10.9%
P6655
 
9.7%
l5382
 
7.8%
c5097
 
7.4%
5000
 
7.3%
r2963
 
4.3%
C2840
 
4.1%
e2678
 
3.9%
H2581
 
3.7%
Other values (13)20344
29.5%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter40495
58.8%
Uppercase Letter21312
30.9%
Space Separator5000
 
7.3%
Dash Punctuation2076
 
3.0%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
i7801
19.3%
t7542
18.6%
l5382
13.3%
c5097
12.6%
r2963
 
7.3%
e2678
 
6.6%
y2419
 
6.0%
n2361
 
5.8%
o2335
 
5.8%
a544
 
1.3%
Other values (4)1373
 
3.4%
Uppercase Letter
ValueCountFrequency (%)
P6655
31.2%
C2840
13.3%
H2581
 
12.1%
E2419
 
11.4%
U2419
 
11.4%
I2322
 
10.9%
N2076
 
9.7%
Space Separator
ValueCountFrequency (%)
5000
100.0%
Dash Punctuation
ValueCountFrequency (%)
-2076
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin61807
89.7%
Common7076
 
10.3%

Most frequent character per script

Latin
ValueCountFrequency (%)
i7801
12.6%
t7542
12.2%
P6655
10.8%
l5382
 
8.7%
c5097
 
8.2%
r2963
 
4.8%
C2840
 
4.6%
e2678
 
4.3%
H2581
 
4.2%
E2419
 
3.9%
Other values (11)15849
25.6%
Common
ValueCountFrequency (%)
5000
70.7%
-2076
29.3%

Most occurring blocks

ValueCountFrequency (%)
ASCII68883
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
i7801
 
11.3%
t7542
 
10.9%
P6655
 
9.7%
l5382
 
7.8%
c5097
 
7.4%
5000
 
7.3%
r2963
 
4.3%
C2840
 
4.1%
e2678
 
3.9%
H2581
 
3.7%
Other values (13)20344
29.5%

entityid
Real number (ℝ≥0)

HIGH CORRELATION

Distinct984
Distinct (%)19.7%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean29407.4486
Minimum34
Maximum64137
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size39.2 KiB
2022-11-17T14:35:26.183051image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum34
5-th percentile1752
Q19990.25
median17886
Q356814
95-th percentile60971.95
Maximum64137
Range64103
Interquartile range (IQR)46823.75

Descriptive statistics

Standard deviation22797.80787
Coefficient of variation (CV)0.7752392319
Kurtosis-1.612175848
Mean29407.4486
Median Absolute Deviation (MAD)14621
Skewness0.3191801074
Sum147037243
Variance519740043.5
MonotonicityNot monotonic
2022-11-17T14:35:26.349383image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
18642167
 
3.3%
17609138
 
2.8%
1765085
 
1.7%
1378183
 
1.7%
714074
 
1.5%
1753970
 
1.4%
425470
 
1.4%
5866163
 
1.3%
4057761
 
1.2%
1754348
 
1.0%
Other values (974)4141
82.8%
ValueCountFrequency (%)
341
 
< 0.1%
21315
 
0.3%
21940
0.8%
22144
0.9%
4291
 
< 0.1%
5031
 
< 0.1%
73335
0.7%
7659
 
0.2%
7682
 
< 0.1%
7922
 
< 0.1%
ValueCountFrequency (%)
641371
 
< 0.1%
640451
 
< 0.1%
640254
0.1%
638411
 
< 0.1%
638221
 
< 0.1%
637053
0.1%
635341
 
< 0.1%
634714
0.1%
632011
 
< 0.1%
631814
0.1%

entityName
Categorical

HIGH CARDINALITY

Distinct985
Distinct (%)19.7%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
Tennessee Valley Authority
 
167
Southern California Edison Co
 
138
Southern Power Co
 
85
Northern States Power Co - Minnesota
 
83
Georgia Power Co
 
74
Other values (980)
4453 

Length

Max length49
Median length39
Mean length25.1944
Min length5

Characters and Unicode

Total characters125972
Distinct characters73
Distinct categories9 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique390 ?
Unique (%)7.8%

Sample

1st rowPeaker Power, LLC
2nd rowPeaker Power, LLC
3rd rowPecos Wind I LP
4th rowPecos Wind II LP
5th rowPedricktown Cogeneration Company LP

Common Values

ValueCountFrequency (%)
Tennessee Valley Authority167
 
3.3%
Southern California Edison Co138
 
2.8%
Southern Power Co85
 
1.7%
Northern States Power Co - Minnesota83
 
1.7%
Georgia Power Co74
 
1.5%
Consumers Energy Co70
 
1.4%
Sustainable Power Group, LLC63
 
1.3%
American Mun Power-Ohio, Inc61
 
1.2%
South Carolina Electric&Gas Company61
 
1.2%
South Carolina Public Service Authority48
 
1.0%
Other values (975)4150
83.0%

Length

2022-11-17T14:35:26.529625image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
llc1412
 
6.9%
power1027
 
5.0%
789
 
3.8%
co774
 
3.8%
of697
 
3.4%
inc599
 
2.9%
energy591
 
2.9%
city591
 
2.9%
authority289
 
1.4%
electric263
 
1.3%
Other values (1222)13497
65.7%

Most occurring characters

ValueCountFrequency (%)
15529
 
12.3%
e9975
 
7.9%
o9139
 
7.3%
r7948
 
6.3%
n7396
 
5.9%
a6743
 
5.4%
i6363
 
5.1%
t5888
 
4.7%
C5039
 
4.0%
l4279
 
3.4%
Other values (63)47673
37.8%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter82020
65.1%
Uppercase Letter24807
 
19.7%
Space Separator15529
 
12.3%
Other Punctuation1296
 
1.0%
Dash Punctuation815
 
0.6%
Open Punctuation521
 
0.4%
Close Punctuation521
 
0.4%
Decimal Number431
 
0.3%
Control32
 
< 0.1%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
e9975
12.2%
o9139
11.1%
r7948
9.7%
n7396
9.0%
a6743
 
8.2%
i6363
 
7.8%
t5888
 
7.2%
l4279
 
5.2%
s3574
 
4.4%
y2640
 
3.2%
Other values (16)18075
22.0%
Uppercase Letter
ValueCountFrequency (%)
C5039
20.3%
L3389
13.7%
S2142
8.6%
P2069
 
8.3%
E1720
 
6.9%
A1259
 
5.1%
I1158
 
4.7%
N999
 
4.0%
M889
 
3.6%
G884
 
3.6%
Other values (16)5259
21.2%
Decimal Number
ValueCountFrequency (%)
098
22.7%
189
20.6%
288
20.4%
342
9.7%
540
9.3%
932
 
7.4%
622
 
5.1%
77
 
1.6%
87
 
1.6%
46
 
1.4%
Other Punctuation
ValueCountFrequency (%)
,794
61.3%
&252
 
19.4%
.211
 
16.3%
/36
 
2.8%
#2
 
0.2%
?1
 
0.1%
Space Separator
ValueCountFrequency (%)
15529
100.0%
Dash Punctuation
ValueCountFrequency (%)
-815
100.0%
Open Punctuation
ValueCountFrequency (%)
(521
100.0%
Close Punctuation
ValueCountFrequency (%)
)521
100.0%
Control
ValueCountFrequency (%)
32
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin106827
84.8%
Common19145
 
15.2%

Most frequent character per script

Latin
ValueCountFrequency (%)
e9975
 
9.3%
o9139
 
8.6%
r7948
 
7.4%
n7396
 
6.9%
a6743
 
6.3%
i6363
 
6.0%
t5888
 
5.5%
C5039
 
4.7%
l4279
 
4.0%
s3574
 
3.3%
Other values (42)40483
37.9%
Common
ValueCountFrequency (%)
15529
81.1%
-815
 
4.3%
,794
 
4.1%
(521
 
2.7%
)521
 
2.7%
&252
 
1.3%
.211
 
1.1%
098
 
0.5%
189
 
0.5%
288
 
0.5%
Other values (11)227
 
1.2%

Most occurring blocks

ValueCountFrequency (%)
ASCII125972
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
15529
 
12.3%
e9975
 
7.9%
o9139
 
7.3%
r7948
 
6.3%
n7396
 
5.9%
a6743
 
5.4%
i6363
 
5.1%
t5888
 
4.7%
C5039
 
4.0%
l4279
 
3.4%
Other values (63)47673
37.8%

plantid
Real number (ℝ≥0)

HIGH CORRELATION

Distinct2008
Distinct (%)40.2%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean31686.292
Minimum46
Maximum64422
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size39.2 KiB
2022-11-17T14:35:26.696861image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum46
5-th percentile719
Q13397
median50385
Q357482
95-th percentile60924.15
Maximum64422
Range64376
Interquartile range (IQR)54085

Descriptive statistics

Standard deviation26625.32909
Coefficient of variation (CV)0.8402791051
Kurtosis-1.943962495
Mean31686.292
Median Absolute Deviation (MAD)11943.5
Skewness-0.07555309445
Sum158431460
Variance708908148.9
MonotonicityNot monotonic
2022-11-17T14:35:26.862795image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
363027
 
0.5%
5476627
 
0.5%
340624
 
0.5%
339322
 
0.4%
1027920
 
0.4%
116620
 
0.4%
5478218
 
0.4%
329517
 
0.3%
340317
 
0.3%
5538017
 
0.3%
Other values (1998)4791
95.8%
ValueCountFrequency (%)
463
 
0.1%
479
0.2%
484
 
0.1%
511
 
< 0.1%
6411
0.2%
651
 
< 0.1%
668
0.2%
694
 
0.1%
702
 
< 0.1%
783
 
0.1%
ValueCountFrequency (%)
644224
0.1%
642321
 
< 0.1%
642311
 
< 0.1%
639861
 
< 0.1%
638571
 
< 0.1%
638371
 
< 0.1%
638361
 
< 0.1%
638351
 
< 0.1%
637531
 
< 0.1%
636812
< 0.1%

plantName
Categorical

HIGH CARDINALITY

Distinct2011
Distinct (%)40.2%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
Pearsall
 
27
Boydton Plank Road Cogen Plant
 
27
Johnsonville
 
24
Allen
 
22
Mt Pleasant
 
20
Other values (2006)
4880 

Length

Max length45
Median length33
Mean length17.7466
Min length3

Characters and Unicode

Total characters88733
Distinct characters73
Distinct categories9 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1029 ?
Unique (%)20.6%

Sample

1st rowPort Comfort Power LLC
2nd rowPort Comfort Power LLC
3rd rowWoodward Mountain I
4th rowWoodward Mountain II
5th rowPedricktown Cogeneration Company LP

Common Values

ValueCountFrequency (%)
Pearsall27
 
0.5%
Boydton Plank Road Cogen Plant27
 
0.5%
Johnsonville24
 
0.5%
Allen22
 
0.4%
Mt Pleasant20
 
0.4%
Kansas River Project20
 
0.4%
Seneca Energy18
 
0.4%
Urquhart17
 
0.3%
T H Wharton17
 
0.3%
Union Power Station17
 
0.3%
Other values (2001)4791
95.8%

Length

2022-11-17T14:35:27.050455image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
solar555
 
4.0%
energy365
 
2.6%
llc362
 
2.6%
plant284
 
2.0%
project266
 
1.9%
power234
 
1.7%
station198
 
1.4%
center182
 
1.3%
facility178
 
1.3%
wind154
 
1.1%
Other values (2170)11209
80.1%

Most occurring characters

ValueCountFrequency (%)
8988
 
10.1%
e7301
 
8.2%
a6573
 
7.4%
o5734
 
6.5%
r5718
 
6.4%
n5583
 
6.3%
t5213
 
5.9%
l4643
 
5.2%
i4612
 
5.2%
C2167
 
2.4%
Other values (63)32201
36.3%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter61953
69.8%
Uppercase Letter15858
 
17.9%
Space Separator8988
 
10.1%
Decimal Number944
 
1.1%
Other Punctuation459
 
0.5%
Open Punctuation177
 
0.2%
Close Punctuation177
 
0.2%
Dash Punctuation174
 
0.2%
Control3
 
< 0.1%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
e7301
11.8%
a6573
10.6%
o5734
9.3%
r5718
9.2%
n5583
9.0%
t5213
8.4%
l4643
 
7.5%
i4612
 
7.4%
s2165
 
3.5%
y1691
 
2.7%
Other values (16)12720
20.5%
Uppercase Letter
ValueCountFrequency (%)
C2167
13.7%
S1959
12.4%
P1690
 
10.7%
L1314
 
8.3%
E740
 
4.7%
M732
 
4.6%
G725
 
4.6%
B690
 
4.4%
H674
 
4.3%
F669
 
4.2%
Other values (16)4498
28.4%
Decimal Number
ValueCountFrequency (%)
1216
22.9%
2197
20.9%
0111
11.8%
393
9.9%
480
 
8.5%
564
 
6.8%
662
 
6.6%
846
 
4.9%
942
 
4.4%
733
 
3.5%
Other Punctuation
ValueCountFrequency (%)
,192
41.8%
#141
30.7%
.91
19.8%
&18
 
3.9%
/10
 
2.2%
'7
 
1.5%
Space Separator
ValueCountFrequency (%)
8988
100.0%
Open Punctuation
ValueCountFrequency (%)
(177
100.0%
Close Punctuation
ValueCountFrequency (%)
)177
100.0%
Dash Punctuation
ValueCountFrequency (%)
-174
100.0%
Control
ValueCountFrequency (%)
3
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin77811
87.7%
Common10922
 
12.3%

Most frequent character per script

Latin
ValueCountFrequency (%)
e7301
 
9.4%
a6573
 
8.4%
o5734
 
7.4%
r5718
 
7.3%
n5583
 
7.2%
t5213
 
6.7%
l4643
 
6.0%
i4612
 
5.9%
C2167
 
2.8%
s2165
 
2.8%
Other values (42)28102
36.1%
Common
ValueCountFrequency (%)
8988
82.3%
1216
 
2.0%
2197
 
1.8%
,192
 
1.8%
(177
 
1.6%
)177
 
1.6%
-174
 
1.6%
#141
 
1.3%
0111
 
1.0%
393
 
0.9%
Other values (11)456
 
4.2%

Most occurring blocks

ValueCountFrequency (%)
ASCII88733
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
8988
 
10.1%
e7301
 
8.2%
a6573
 
7.4%
o5734
 
6.5%
r5718
 
6.4%
n5583
 
6.3%
t5213
 
5.9%
l4643
 
5.2%
i4612
 
5.2%
C2167
 
2.4%
Other values (63)32201
36.3%

generatorid
Categorical

HIGH CARDINALITY

Distinct1541
Distinct (%)30.8%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
1
694 
2
405 
3
 
274
4
 
196
GEN1
 
190
Other values (1536)
3241 

Length

Max length5
Median length4
Mean length2.5848
Min length1

Characters and Unicode

Total characters12924
Distinct characters41
Distinct categories6 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1251 ?
Unique (%)25.0%

Sample

1st rowPC1
2nd rowPC2
3rd row1
4th row1
5th rowGEN1

Common Values

ValueCountFrequency (%)
1694
 
13.9%
2405
 
8.1%
3274
 
5.5%
4196
 
3.9%
GEN1190
 
3.8%
5134
 
2.7%
6112
 
2.2%
GEN295
 
1.9%
PV187
 
1.7%
783
 
1.7%
Other values (1531)2730
54.6%

Length

2022-11-17T14:35:27.207206image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
1712
 
14.1%
2412
 
8.2%
3276
 
5.5%
4198
 
3.9%
gen1190
 
3.8%
5137
 
2.7%
6114
 
2.3%
gen295
 
1.9%
pv187
 
1.7%
784
 
1.7%
Other values (1516)2734
54.3%

Most occurring characters

ValueCountFrequency (%)
12058
15.9%
G1173
 
9.1%
21102
 
8.5%
N742
 
5.7%
E718
 
5.6%
T709
 
5.5%
3681
 
5.3%
S601
 
4.7%
C541
 
4.2%
4510
 
3.9%
Other values (31)4089
31.6%

Most occurring categories

ValueCountFrequency (%)
Uppercase Letter6854
53.0%
Decimal Number5920
45.8%
Dash Punctuation103
 
0.8%
Space Separator39
 
0.3%
Other Punctuation7
 
0.1%
Lowercase Letter1
 
< 0.1%

Most frequent character per category

Uppercase Letter
ValueCountFrequency (%)
G1173
17.1%
N742
10.8%
E718
10.5%
T709
10.3%
S601
8.8%
C541
 
7.9%
A282
 
4.1%
P258
 
3.8%
I217
 
3.2%
B193
 
2.8%
Other values (16)1420
20.7%
Decimal Number
ValueCountFrequency (%)
12058
34.8%
21102
18.6%
3681
 
11.5%
4510
 
8.6%
0382
 
6.5%
5361
 
6.1%
6274
 
4.6%
7240
 
4.1%
8184
 
3.1%
9128
 
2.2%
Other Punctuation
ValueCountFrequency (%)
#6
85.7%
.1
 
14.3%
Dash Punctuation
ValueCountFrequency (%)
-103
100.0%
Space Separator
ValueCountFrequency (%)
39
100.0%
Lowercase Letter
ValueCountFrequency (%)
a1
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin6855
53.0%
Common6069
47.0%

Most frequent character per script

Latin
ValueCountFrequency (%)
G1173
17.1%
N742
10.8%
E718
10.5%
T709
10.3%
S601
8.8%
C541
 
7.9%
A282
 
4.1%
P258
 
3.8%
I217
 
3.2%
B193
 
2.8%
Other values (17)1421
20.7%
Common
ValueCountFrequency (%)
12058
33.9%
21102
18.2%
3681
 
11.2%
4510
 
8.4%
0382
 
6.3%
5361
 
5.9%
6274
 
4.5%
7240
 
4.0%
8184
 
3.0%
9128
 
2.1%
Other values (4)149
 
2.5%

Most occurring blocks

ValueCountFrequency (%)
ASCII12924
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
12058
15.9%
G1173
 
9.1%
21102
 
8.5%
N742
 
5.7%
E718
 
5.6%
T709
 
5.5%
3681
 
5.3%
S601
 
4.7%
C541
 
4.2%
4510
 
3.9%
Other values (31)4089
31.6%

unit
Categorical

HIGH CARDINALITY
HIGH CORRELATION
MISSING

Distinct80
Distinct (%)17.5%
Missing4542
Missing (%)90.8%
Memory size39.2 KiB
CC1
175 
1
 
15
CHP1
 
10
CC2
 
10
BLK2
 
10
Other values (75)
238 

Length

Max length4
Median length4
Mean length3.43231441
Min length1

Characters and Unicode

Total characters1572
Distinct characters31
Distinct categories2 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique8 ?
Unique (%)1.7%

Sample

1st rowCC1
2nd rowCC1
3rd rowCC1
4th rowCC1
5th rowG104

Common Values

ValueCountFrequency (%)
CC1175
 
3.5%
115
 
0.3%
CHP110
 
0.2%
CC210
 
0.2%
BLK210
 
0.2%
CC0110
 
0.2%
PB019
 
0.2%
BLK19
 
0.2%
STG16
 
0.1%
PLTB6
 
0.1%
Other values (70)198
 
4.0%
(Missing)4542
90.8%

Length

2022-11-17T14:35:27.348725image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
cc1175
38.2%
115
 
3.3%
chp110
 
2.2%
cc0110
 
2.2%
cc210
 
2.2%
blk210
 
2.2%
pb019
 
2.0%
blk19
 
2.0%
stg16
 
1.3%
pltb6
 
1.3%
Other values (70)198
43.2%

Most occurring characters

ValueCountFrequency (%)
C506
32.2%
1344
21.9%
0109
 
6.9%
B78
 
5.0%
G65
 
4.1%
257
 
3.6%
P47
 
3.0%
L46
 
2.9%
T40
 
2.5%
S38
 
2.4%
Other values (21)242
15.4%

Most occurring categories

ValueCountFrequency (%)
Uppercase Letter964
61.3%
Decimal Number608
38.7%

Most frequent character per category

Uppercase Letter
ValueCountFrequency (%)
C506
52.5%
B78
 
8.1%
G65
 
6.7%
P47
 
4.9%
L46
 
4.8%
T40
 
4.1%
S38
 
3.9%
H29
 
3.0%
K26
 
2.7%
U17
 
1.8%
Other values (12)72
 
7.5%
Decimal Number
ValueCountFrequency (%)
1344
56.6%
0109
 
17.9%
257
 
9.4%
331
 
5.1%
421
 
3.5%
614
 
2.3%
513
 
2.1%
810
 
1.6%
79
 
1.5%

Most occurring scripts

ValueCountFrequency (%)
Latin964
61.3%
Common608
38.7%

Most frequent character per script

Latin
ValueCountFrequency (%)
C506
52.5%
B78
 
8.1%
G65
 
6.7%
P47
 
4.9%
L46
 
4.8%
T40
 
4.1%
S38
 
3.9%
H29
 
3.0%
K26
 
2.7%
U17
 
1.8%
Other values (12)72
 
7.5%
Common
ValueCountFrequency (%)
1344
56.6%
0109
 
17.9%
257
 
9.4%
331
 
5.1%
421
 
3.5%
614
 
2.3%
513
 
2.1%
810
 
1.6%
79
 
1.5%

Most occurring blocks

ValueCountFrequency (%)
ASCII1572
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
C506
32.2%
1344
21.9%
0109
 
6.9%
B78
 
5.0%
G65
 
4.1%
257
 
3.6%
P47
 
3.0%
L46
 
2.9%
T40
 
2.5%
S38
 
2.4%
Other values (21)242
15.4%

technology
Categorical

HIGH CORRELATION

Distinct24
Distinct (%)0.5%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
Petroleum Liquids
928 
Conventional Hydroelectric
879 
Solar Photovoltaic
863 
Natural Gas Fired Combustion Turbine
500 
Natural Gas Fired Combined Cycle
450 
Other values (19)
1380 

Length

Max length38
Median length33
Mean length23.5074
Min length7

Characters and Unicode

Total characters117537
Distinct characters41
Distinct categories4 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowNatural Gas Fired Combustion Turbine
2nd rowNatural Gas Fired Combustion Turbine
3rd rowOnshore Wind Turbine
4th rowOnshore Wind Turbine
5th rowNatural Gas Fired Combined Cycle

Common Values

ValueCountFrequency (%)
Petroleum Liquids928
18.6%
Conventional Hydroelectric879
17.6%
Solar Photovoltaic863
17.3%
Natural Gas Fired Combustion Turbine500
10.0%
Natural Gas Fired Combined Cycle450
9.0%
Natural Gas Internal Combustion Engine243
 
4.9%
Onshore Wind Turbine242
 
4.8%
Landfill Gas225
 
4.5%
Conventional Steam Coal188
 
3.8%
Natural Gas Steam Turbine135
 
2.7%
Other values (14)347
 
6.9%

Length

2022-11-17T14:35:27.490145image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
gas1568
 
10.9%
natural1343
 
9.3%
conventional1067
 
7.4%
fired950
 
6.6%
hydroelectric934
 
6.5%
petroleum932
 
6.4%
liquids928
 
6.4%
turbine877
 
6.1%
solar872
 
6.0%
photovoltaic863
 
6.0%
Other values (29)4117
28.5%

Most occurring characters

ValueCountFrequency (%)
o10446
 
8.9%
9451
 
8.0%
e9132
 
7.8%
i8650
 
7.4%
a8509
 
7.2%
t7730
 
6.6%
r7592
 
6.5%
l7473
 
6.4%
n6970
 
5.9%
u4911
 
4.2%
Other values (31)36673
31.2%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter93474
79.5%
Uppercase Letter14527
 
12.4%
Space Separator9451
 
8.0%
Other Punctuation85
 
0.1%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
o10446
11.2%
e9132
9.8%
i8650
9.3%
a8509
9.1%
t7730
8.3%
r7592
8.1%
l7473
8.0%
n6970
 
7.5%
u4911
 
5.3%
s3966
 
4.2%
Other values (13)18095
19.4%
Uppercase Letter
ValueCountFrequency (%)
C2902
20.0%
P1850
12.7%
G1622
11.2%
N1360
9.4%
S1268
8.7%
L1153
 
7.9%
F952
 
6.6%
H934
 
6.4%
T886
 
6.1%
W569
 
3.9%
Other values (6)1031
 
7.1%
Space Separator
ValueCountFrequency (%)
9451
100.0%
Other Punctuation
ValueCountFrequency (%)
/85
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin108001
91.9%
Common9536
 
8.1%

Most frequent character per script

Latin
ValueCountFrequency (%)
o10446
 
9.7%
e9132
 
8.5%
i8650
 
8.0%
a8509
 
7.9%
t7730
 
7.2%
r7592
 
7.0%
l7473
 
6.9%
n6970
 
6.5%
u4911
 
4.5%
s3966
 
3.7%
Other values (29)32622
30.2%
Common
ValueCountFrequency (%)
9451
99.1%
/85
 
0.9%

Most occurring blocks

ValueCountFrequency (%)
ASCII117537
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
o10446
 
8.9%
9451
 
8.0%
e9132
 
7.8%
i8650
 
7.4%
a8509
 
7.2%
t7730
 
6.6%
r7592
 
6.5%
l7473
 
6.4%
n6970
 
5.9%
u4911
 
4.2%
Other values (31)36673
31.2%

energy_source_code
Categorical

HIGH CORRELATION

Distinct28
Distinct (%)0.6%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
NG
1343 
WAT
934 
DFO
890 
SUN
872 
WND
242 
Other values (23)
719 

Length

Max length3
Median length3
Mean length2.7184
Min length2

Characters and Unicode

Total characters13592
Distinct characters22
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique2 ?
Unique (%)< 0.1%

Sample

1st rowNG
2nd rowNG
3rd rowWND
4th rowWND
5th rowNG

Common Values

ValueCountFrequency (%)
NG1343
26.9%
WAT934
18.7%
DFO890
17.8%
SUN872
17.4%
WND242
 
4.8%
LFG225
 
4.5%
BIT81
 
1.6%
SUB77
 
1.5%
OBG61
 
1.2%
GEO47
 
0.9%
Other values (18)228
 
4.6%

Length

2022-11-17T14:35:27.631384image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
ng1343
26.9%
wat934
18.7%
dfo890
17.8%
sun872
17.4%
wnd242
 
4.8%
lfg225
 
4.5%
bit81
 
1.6%
sub77
 
1.5%
obg61
 
1.2%
geo47
 
0.9%
Other values (18)228
 
4.6%

Most occurring characters

ValueCountFrequency (%)
N2474
18.2%
G1685
12.4%
W1274
9.4%
D1177
8.7%
F1132
8.3%
O1030
7.6%
T1016
7.5%
S1003
7.4%
U968
 
7.1%
A936
 
6.9%
Other values (12)897
 
6.6%

Most occurring categories

ValueCountFrequency (%)
Uppercase Letter13592
100.0%

Most frequent character per category

Uppercase Letter
ValueCountFrequency (%)
N2474
18.2%
G1685
12.4%
W1274
9.4%
D1177
8.7%
F1132
8.3%
O1030
7.6%
T1016
7.5%
S1003
7.4%
U968
 
7.1%
A936
 
6.9%
Other values (12)897
 
6.6%

Most occurring scripts

ValueCountFrequency (%)
Latin13592
100.0%

Most frequent character per script

Latin
ValueCountFrequency (%)
N2474
18.2%
G1685
12.4%
W1274
9.4%
D1177
8.7%
F1132
8.3%
O1030
7.6%
T1016
7.5%
S1003
7.4%
U968
 
7.1%
A936
 
6.9%
Other values (12)897
 
6.6%

Most occurring blocks

ValueCountFrequency (%)
ASCII13592
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
N2474
18.2%
G1685
12.4%
W1274
9.4%
D1177
8.7%
F1132
8.3%
O1030
7.6%
T1016
7.5%
S1003
7.4%
U968
 
7.1%
A936
 
6.9%
Other values (12)897
 
6.6%

energy-source-desc
Categorical

HIGH CORRELATION

Distinct28
Distinct (%)0.6%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
Natural Gas
1343 
Water
934 
Disillate Fuel Oil
890 
Solar
872 
Wind
242 
Other values (23)
719 

Length

Max length35
Median length27
Mean length10.2334
Min length4

Characters and Unicode

Total characters51167
Distinct characters42
Distinct categories5 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique2 ?
Unique (%)< 0.1%

Sample

1st rowNatural Gas
2nd rowNatural Gas
3rd rowWind
4th rowWind
5th rowNatural Gas

Common Values

ValueCountFrequency (%)
Natural Gas1343
26.9%
Water934
18.7%
Disillate Fuel Oil890
17.8%
Solar872
17.4%
Wind242
 
4.8%
Landfill Gas225
 
4.5%
Bituminous Coal81
 
1.6%
Subbituminous Coal77
 
1.5%
Other Biomass Gases 61
 
1.2%
Geothermal47
 
0.9%
Other values (18)228
 
4.6%

Length

2022-11-17T14:35:27.793500image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
gas1575
17.6%
natural1343
15.0%
water934
10.4%
oil914
10.2%
fuel907
10.1%
disillate890
9.9%
solar872
9.7%
wind242
 
2.7%
landfill225
 
2.5%
coal186
 
2.1%
Other values (32)868
9.7%

Most occurring characters

ValueCountFrequency (%)
a7736
15.1%
l6677
13.0%
4017
 
7.9%
i3733
 
7.3%
t3603
 
7.0%
r3419
 
6.7%
e3283
 
6.4%
s3061
 
6.0%
u2755
 
5.4%
G1683
 
3.3%
Other values (32)11200
21.9%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter38248
74.8%
Uppercase Letter8884
 
17.4%
Space Separator4017
 
7.9%
Open Punctuation9
 
< 0.1%
Close Punctuation9
 
< 0.1%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
a7736
20.2%
l6677
17.5%
i3733
9.8%
t3603
9.4%
r3419
8.9%
e3283
8.6%
s3061
 
8.0%
u2755
 
7.2%
o1567
 
4.1%
n692
 
1.8%
Other values (11)1722
 
4.5%
Uppercase Letter
ValueCountFrequency (%)
G1683
18.9%
N1360
15.3%
W1301
14.6%
S1005
11.3%
O983
11.1%
F907
10.2%
D890
10.0%
L267
 
3.0%
C190
 
2.1%
B184
 
2.1%
Other values (8)114
 
1.3%
Space Separator
ValueCountFrequency (%)
4017
100.0%
Open Punctuation
ValueCountFrequency (%)
(9
100.0%
Close Punctuation
ValueCountFrequency (%)
)9
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin47132
92.1%
Common4035
 
7.9%

Most frequent character per script

Latin
ValueCountFrequency (%)
a7736
16.4%
l6677
14.2%
i3733
 
7.9%
t3603
 
7.6%
r3419
 
7.3%
e3283
 
7.0%
s3061
 
6.5%
u2755
 
5.8%
G1683
 
3.6%
o1567
 
3.3%
Other values (29)9615
20.4%
Common
ValueCountFrequency (%)
4017
99.6%
(9
 
0.2%
)9
 
0.2%

Most occurring blocks

ValueCountFrequency (%)
ASCII51167
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
a7736
15.1%
l6677
13.0%
4017
 
7.9%
i3733
 
7.3%
t3603
 
7.0%
r3419
 
6.7%
e3283
 
6.4%
s3061
 
6.0%
u2755
 
5.4%
G1683
 
3.3%
Other values (32)11200
21.9%

prime_mover_code
Categorical

HIGH CORRELATION

Distinct16
Distinct (%)0.3%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
IC
1270 
HY
879 
PV
863 
GT
632 
ST
492 
Other values (11)
864 

Length

Max length2
Median length2
Mean length2
Min length2

Characters and Unicode

Total characters10000
Distinct characters14
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowGT
2nd rowGT
3rd rowWT
4th rowWT
5th rowCT

Common Values

ValueCountFrequency (%)
IC1270
25.4%
HY879
17.6%
PV863
17.3%
GT632
12.6%
ST492
 
9.8%
CT300
 
6.0%
WT242
 
4.8%
CA152
 
3.0%
PS55
 
1.1%
FC35
 
0.7%
Other values (6)80
 
1.6%

Length

2022-11-17T14:35:27.927875image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
ic1270
25.4%
hy879
17.6%
pv863
17.3%
gt632
12.6%
st492
 
9.8%
ct300
 
6.0%
wt242
 
4.8%
ca152
 
3.0%
ps55
 
1.1%
fc35
 
0.7%
Other values (6)80
 
1.6%

Most occurring characters

ValueCountFrequency (%)
C1778
17.8%
T1707
17.1%
I1270
12.7%
P920
9.2%
H879
8.8%
Y879
8.8%
V863
8.6%
G632
 
6.3%
S566
 
5.7%
W244
 
2.4%
Other values (4)262
 
2.6%

Most occurring categories

ValueCountFrequency (%)
Uppercase Letter10000
100.0%

Most frequent character per category

Uppercase Letter
ValueCountFrequency (%)
C1778
17.8%
T1707
17.1%
I1270
12.7%
P920
9.2%
H879
8.8%
Y879
8.8%
V863
8.6%
G632
 
6.3%
S566
 
5.7%
W244
 
2.4%
Other values (4)262
 
2.6%

Most occurring scripts

ValueCountFrequency (%)
Latin10000
100.0%

Most frequent character per script

Latin
ValueCountFrequency (%)
C1778
17.8%
T1707
17.1%
I1270
12.7%
P920
9.2%
H879
8.8%
Y879
8.8%
V863
8.6%
G632
 
6.3%
S566
 
5.7%
W244
 
2.4%
Other values (4)262
 
2.6%

Most occurring blocks

ValueCountFrequency (%)
ASCII10000
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
C1778
17.8%
T1707
17.1%
I1270
12.7%
P920
9.2%
H879
8.8%
Y879
8.8%
V863
8.6%
G632
 
6.3%
S566
 
5.7%
W244
 
2.4%
Other values (4)262
 
2.6%

balancing_authority_code
Categorical

HIGH CORRELATION
MISSING

Distinct50
Distinct (%)1.1%
Missing285
Missing (%)5.7%
Memory size39.2 KiB
MISO
889 
CISO
701 
PJM
619 
SWPP
344 
NYIS
337 
Other values (45)
1825 

Length

Max length4
Median length4
Mean length3.746129374
Min length2

Characters and Unicode

Total characters17663
Distinct characters24
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique5 ?
Unique (%)0.1%

Sample

1st rowERCO
2nd rowERCO
3rd rowERCO
4th rowERCO
5th rowPJM

Common Values

ValueCountFrequency (%)
MISO889
17.8%
CISO701
14.0%
PJM619
12.4%
SWPP344
 
6.9%
NYIS337
 
6.7%
ISNE264
 
5.3%
ERCO234
 
4.7%
TVA178
 
3.6%
SOCO161
 
3.2%
DUK132
 
2.6%
Other values (40)856
17.1%
(Missing)285
 
5.7%

Length

2022-11-17T14:35:28.057321image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
miso889
18.9%
ciso701
14.9%
pjm619
13.1%
swpp344
 
7.3%
nyis337
 
7.1%
isne264
 
5.6%
erco234
 
5.0%
tva178
 
3.8%
soco161
 
3.4%
duk132
 
2.8%
Other values (40)856
18.2%

Most occurring characters

ValueCountFrequency (%)
S2916
16.5%
I2306
13.1%
O2226
12.6%
P1825
10.3%
C1628
9.2%
M1599
9.1%
E868
 
4.9%
N662
 
3.7%
J625
 
3.5%
A566
 
3.2%
Other values (14)2442
13.8%

Most occurring categories

ValueCountFrequency (%)
Uppercase Letter17663
100.0%

Most frequent character per category

Uppercase Letter
ValueCountFrequency (%)
S2916
16.5%
I2306
13.1%
O2226
12.6%
P1825
10.3%
C1628
9.2%
M1599
9.1%
E868
 
4.9%
N662
 
3.7%
J625
 
3.5%
A566
 
3.2%
Other values (14)2442
13.8%

Most occurring scripts

ValueCountFrequency (%)
Latin17663
100.0%

Most frequent character per script

Latin
ValueCountFrequency (%)
S2916
16.5%
I2306
13.1%
O2226
12.6%
P1825
10.3%
C1628
9.2%
M1599
9.1%
E868
 
4.9%
N662
 
3.7%
J625
 
3.5%
A566
 
3.2%
Other values (14)2442
13.8%

Most occurring blocks

ValueCountFrequency (%)
ASCII17663
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
S2916
16.5%
I2306
13.1%
O2226
12.6%
P1825
10.3%
C1628
9.2%
M1599
9.1%
E868
 
4.9%
N662
 
3.7%
J625
 
3.5%
A566
 
3.2%
Other values (14)2442
13.8%

balancing-authority-name
Categorical

HIGH CARDINALITY
HIGH CORRELATION
MISSING

Distinct52
Distinct (%)1.1%
Missing277
Missing (%)5.5%
Memory size39.2 KiB
Midcontinent Independent Transmission System Operator, Inc..
889 
California Independent System Operator
701 
PJM Interconnection, LLC
619 
Southwest Power Pool
344 
New York Independent System Operator
337 
Other values (47)
1833 

Length

Max length100
Median length57
Mean length35.90239255
Min length3

Characters and Unicode

Total characters169567
Distinct characters58
Distinct categories8 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique5 ?
Unique (%)0.1%

Sample

1st rowElectric Reliability Council of Texas, Inc.
2nd rowElectric Reliability Council of Texas, Inc.
3rd rowElectric Reliability Council of Texas, Inc.
4th rowElectric Reliability Council of Texas, Inc.
5th rowPJM Interconnection, LLC

Common Values

ValueCountFrequency (%)
Midcontinent Independent Transmission System Operator, Inc..889
17.8%
California Independent System Operator701
14.0%
PJM Interconnection, LLC619
12.4%
Southwest Power Pool344
 
6.9%
New York Independent System Operator337
 
6.7%
ISO New England Inc.264
 
5.3%
Electric Reliability Council of Texas, Inc.234
 
4.7%
Tennessee Valley Authority178
 
3.6%
Southern Company Services, Inc. - Trans161
 
3.2%
Duke Energy Carolinas132
 
2.6%
Other values (42)864
17.3%
(Missing)277
 
5.5%

Length

2022-11-17T14:35:28.220929image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
independent1927
 
9.2%
operator1927
 
9.2%
system1927
 
9.2%
inc1597
 
7.7%
midcontinent889
 
4.3%
transmission889
 
4.3%
california704
 
3.4%
llc629
 
3.0%
new625
 
3.0%
pjm619
 
3.0%
Other values (104)9102
43.7%

Most occurring characters

ValueCountFrequency (%)
n18370
 
10.8%
e17277
 
10.2%
16112
 
9.5%
t11771
 
6.9%
o10754
 
6.3%
r9942
 
5.9%
i9109
 
5.4%
a7488
 
4.4%
s6986
 
4.1%
c5404
 
3.2%
Other values (48)56354
33.2%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter125065
73.8%
Uppercase Letter23441
 
13.8%
Space Separator16112
 
9.5%
Other Punctuation4558
 
2.7%
Dash Punctuation361
 
0.2%
Open Punctuation10
 
< 0.1%
Close Punctuation10
 
< 0.1%
Decimal Number10
 
< 0.1%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
n18370
14.7%
e17277
13.8%
t11771
9.4%
o10754
8.6%
r9942
7.9%
i9109
7.3%
a7488
 
6.0%
s6986
 
5.6%
c5404
 
4.3%
d5375
 
4.3%
Other values (16)22589
18.1%
Uppercase Letter
ValueCountFrequency (%)
I4474
19.1%
S3238
13.8%
C2571
11.0%
O2191
9.3%
P1929
8.2%
M1590
 
6.8%
T1563
 
6.7%
L1296
 
5.5%
E1122
 
4.8%
N696
 
3.0%
Other values (13)2771
11.8%
Other Punctuation
ValueCountFrequency (%)
.2493
54.7%
,1960
43.0%
&105
 
2.3%
Decimal Number
ValueCountFrequency (%)
19
90.0%
21
 
10.0%
Space Separator
ValueCountFrequency (%)
16112
100.0%
Dash Punctuation
ValueCountFrequency (%)
-361
100.0%
Open Punctuation
ValueCountFrequency (%)
(10
100.0%
Close Punctuation
ValueCountFrequency (%)
)10
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin148506
87.6%
Common21061
 
12.4%

Most frequent character per script

Latin
ValueCountFrequency (%)
n18370
 
12.4%
e17277
 
11.6%
t11771
 
7.9%
o10754
 
7.2%
r9942
 
6.7%
i9109
 
6.1%
a7488
 
5.0%
s6986
 
4.7%
c5404
 
3.6%
d5375
 
3.6%
Other values (39)46030
31.0%
Common
ValueCountFrequency (%)
16112
76.5%
.2493
 
11.8%
,1960
 
9.3%
-361
 
1.7%
&105
 
0.5%
(10
 
< 0.1%
)10
 
< 0.1%
19
 
< 0.1%
21
 
< 0.1%

Most occurring blocks

ValueCountFrequency (%)
ASCII169567
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
n18370
 
10.8%
e17277
 
10.2%
16112
 
9.5%
t11771
 
6.9%
o10754
 
6.3%
r9942
 
5.9%
i9109
 
5.4%
a7488
 
4.4%
s6986
 
4.1%
c5404
 
3.2%
Other values (48)56354
33.2%

status
Categorical

HIGH CORRELATION

Distinct4
Distinct (%)0.1%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
OP
4499 
SB
 
386
OS
 
80
OA
 
35

Length

Max length2
Median length2
Mean length2
Min length2

Characters and Unicode

Total characters10000
Distinct characters5
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowOP
2nd rowOP
3rd rowOP
4th rowOP
5th rowOP

Common Values

ValueCountFrequency (%)
OP4499
90.0%
SB386
 
7.7%
OS80
 
1.6%
OA35
 
0.7%

Length

2022-11-17T14:35:28.359868image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-11-17T14:35:28.482446image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
ValueCountFrequency (%)
op4499
90.0%
sb386
 
7.7%
os80
 
1.6%
oa35
 
0.7%

Most occurring characters

ValueCountFrequency (%)
O4614
46.1%
P4499
45.0%
S466
 
4.7%
B386
 
3.9%
A35
 
0.4%

Most occurring categories

ValueCountFrequency (%)
Uppercase Letter10000
100.0%

Most frequent character per category

Uppercase Letter
ValueCountFrequency (%)
O4614
46.1%
P4499
45.0%
S466
 
4.7%
B386
 
3.9%
A35
 
0.4%

Most occurring scripts

ValueCountFrequency (%)
Latin10000
100.0%

Most frequent character per script

Latin
ValueCountFrequency (%)
O4614
46.1%
P4499
45.0%
S466
 
4.7%
B386
 
3.9%
A35
 
0.4%

Most occurring blocks

ValueCountFrequency (%)
ASCII10000
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
O4614
46.1%
P4499
45.0%
S466
 
4.7%
B386
 
3.9%
A35
 
0.4%

statusDescription
Categorical

HIGH CORRELATION

Distinct4
Distinct (%)0.1%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
Operating
4499 
Standby/Backup: available for service but not normally used
 
386
Out of service and NOT expected to return to service in next calendar year
 
80
Out of service but expected to return to service in next calendar year
 
35

Length

Max length74
Median length9
Mean length14.327
Min length9

Characters and Unicode

Total characters71635
Distinct characters29
Distinct categories4 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowOperating
2nd rowOperating
3rd rowOperating
4th rowOperating
5th rowOperating

Common Values

ValueCountFrequency (%)
Operating4499
90.0%
Standby/Backup: available for service but not normally used386
 
7.7%
Out of service and NOT expected to return to service in next calendar year80
 
1.6%
Out of service but expected to return to service in next calendar year35
 
0.7%

Length

2022-11-17T14:35:28.598833image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-11-17T14:35:28.731597image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
ValueCountFrequency (%)
operating4499
49.1%
service616
 
6.7%
not466
 
5.1%
but421
 
4.6%
available386
 
4.2%
for386
 
4.2%
normally386
 
4.2%
used386
 
4.2%
standby/backup386
 
4.2%
to230
 
2.5%
Other values (9)1000
 
10.9%

Most occurring characters

ValueCountFrequency (%)
e7308
10.2%
a7240
10.1%
t6382
8.9%
r6347
8.9%
n6197
8.7%
i5616
 
7.8%
p5000
 
7.0%
O4694
 
6.6%
g4499
 
6.3%
4162
 
5.8%
Other values (19)14190
19.8%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter61075
85.3%
Uppercase Letter5626
 
7.9%
Space Separator4162
 
5.8%
Other Punctuation772
 
1.1%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
e7308
12.0%
a7240
11.9%
t6382
10.4%
r6347
10.4%
n6197
10.1%
i5616
9.2%
p5000
8.2%
g4499
7.4%
l1659
 
2.7%
o1503
 
2.5%
Other values (11)9324
15.3%
Uppercase Letter
ValueCountFrequency (%)
O4694
83.4%
B386
 
6.9%
S386
 
6.9%
N80
 
1.4%
T80
 
1.4%
Other Punctuation
ValueCountFrequency (%)
:386
50.0%
/386
50.0%
Space Separator
ValueCountFrequency (%)
4162
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin66701
93.1%
Common4934
 
6.9%

Most frequent character per script

Latin
ValueCountFrequency (%)
e7308
11.0%
a7240
10.9%
t6382
9.6%
r6347
9.5%
n6197
9.3%
i5616
8.4%
p5000
7.5%
O4694
 
7.0%
g4499
 
6.7%
l1659
 
2.5%
Other values (16)11759
17.6%
Common
ValueCountFrequency (%)
4162
84.4%
:386
 
7.8%
/386
 
7.8%

Most occurring blocks

ValueCountFrequency (%)
ASCII71635
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
e7308
10.2%
a7240
10.1%
t6382
8.9%
r6347
8.9%
n6197
8.7%
i5616
 
7.8%
p5000
 
7.0%
O4694
 
6.6%
g4499
 
6.3%
4162
 
5.8%
Other values (19)14190
19.8%

nameplate-capacity-mw
Real number (ℝ≥0)

HIGH CORRELATION

Distinct748
Distinct (%)15.0%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean56.86852
Minimum0.1
Maximum1300
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size39.2 KiB
2022-11-17T14:35:28.881183image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum0.1
5-th percentile0.4
Q11.6
median5
Q355
95-th percentile245
Maximum1300
Range1299.9
Interquartile range (IQR)53.4

Descriptive statistics

Standard deviation133.6035466
Coefficient of variation (CV)2.349341016
Kurtosis29.72833774
Mean56.86852
Median Absolute Deviation (MAD)4.5
Skewness4.826863195
Sum284342.6
Variance17849.90766
MonotonicityNot monotonic
2022-11-17T14:35:29.062791image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
2255
 
5.1%
1200
 
4.0%
0.5188
 
3.8%
1.6119
 
2.4%
0.3112
 
2.2%
1.8108
 
2.2%
3107
 
2.1%
599
 
2.0%
1.599
 
2.0%
0.895
 
1.9%
Other values (738)3618
72.4%
ValueCountFrequency (%)
0.128
 
0.6%
0.255
 
1.1%
0.3112
2.2%
0.464
 
1.3%
0.5188
3.8%
0.673
 
1.5%
0.744
 
0.9%
0.895
1.9%
0.952
 
1.0%
1200
4.0%
ValueCountFrequency (%)
13006
0.1%
1245.62
 
< 0.1%
12421
 
< 0.1%
1205.12
 
< 0.1%
11901
 
< 0.1%
11522
 
< 0.1%
1029.61
 
< 0.1%
10081
 
< 0.1%
956.81
 
< 0.1%
9522
 
< 0.1%

net-summer-capacity-mw
Real number (ℝ≥0)

HIGH CORRELATION

Distinct827
Distinct (%)16.6%
Missing18
Missing (%)0.4%
Infinite0
Infinite (%)0.0%
Mean52.1248896
Minimum0
Maximum1300
Zeros1
Zeros (%)< 0.1%
Negative0
Negative (%)0.0%
Memory size39.2 KiB
2022-11-17T14:35:29.238230image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0.4
Q11.5
median4.5
Q346.275
95-th percentile225
Maximum1300
Range1300
Interquartile range (IQR)44.775

Descriptive statistics

Standard deviation125.8161606
Coefficient of variation (CV)2.413744404
Kurtosis31.10802866
Mean52.1248896
Median Absolute Deviation (MAD)4
Skewness4.944792423
Sum259686.2
Variance15829.70627
MonotonicityNot monotonic
2022-11-17T14:35:29.445574image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
2252
 
5.0%
0.5194
 
3.9%
1175
 
3.5%
1.5132
 
2.6%
0.3121
 
2.4%
1.8117
 
2.3%
396
 
1.9%
1.696
 
1.9%
0.890
 
1.8%
0.684
 
1.7%
Other values (817)3625
72.5%
ValueCountFrequency (%)
01
 
< 0.1%
0.138
 
0.8%
0.254
 
1.1%
0.3121
2.4%
0.473
 
1.5%
0.5194
3.9%
0.684
1.7%
0.761
 
1.2%
0.890
1.8%
0.981
1.6%
ValueCountFrequency (%)
13001
< 0.1%
12991
< 0.1%
1249.11
< 0.1%
12392
< 0.1%
12312
< 0.1%
1160.11
< 0.1%
1150.11
< 0.1%
11102
< 0.1%
1104.91
< 0.1%
1103.71
< 0.1%

net-winter-capacity-mw
Real number (ℝ≥0)

HIGH CORRELATION

Distinct809
Distinct (%)16.3%
Missing27
Missing (%)0.5%
Infinite0
Infinite (%)0.0%
Mean53.79525437
Minimum0
Maximum1299
Zeros14
Zeros (%)0.3%
Negative0
Negative (%)0.0%
Memory size39.2 KiB
2022-11-17T14:35:30.465349image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0.4
Q11.5
median4.6
Q349.5
95-th percentile230
Maximum1299
Range1299
Interquartile range (IQR)48

Descriptive statistics

Standard deviation128.2640542
Coefficient of variation (CV)2.384300543
Kurtosis30.27219714
Mean53.79525437
Median Absolute Deviation (MAD)4.1
Skewness4.85992631
Sum267523.8
Variance16451.6676
MonotonicityNot monotonic
2022-11-17T14:35:30.640832image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
2249
 
5.0%
0.5184
 
3.7%
1170
 
3.4%
1.5126
 
2.5%
0.3123
 
2.5%
1.8116
 
2.3%
1.6105
 
2.1%
0.8103
 
2.1%
5100
 
2.0%
387
 
1.7%
Other values (799)3610
72.2%
ValueCountFrequency (%)
014
 
0.3%
0.142
 
0.8%
0.256
 
1.1%
0.3123
2.5%
0.469
 
1.4%
0.5184
3.7%
0.680
1.6%
0.767
 
1.3%
0.8103
2.1%
0.974
1.5%
ValueCountFrequency (%)
12992
< 0.1%
12652
< 0.1%
12572
< 0.1%
1249.11
< 0.1%
1198.71
< 0.1%
1179.81
< 0.1%
1135.21
< 0.1%
1134.21
< 0.1%
1131.71
< 0.1%
11102
< 0.1%

operating-year-month
Categorical

HIGH CARDINALITY

Distinct915
Distinct (%)18.3%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
2016-12
 
83
2015-02
 
74
2001-06
 
53
2012-12
 
51
2014-12
 
41
Other values (910)
4698 

Length

Max length7
Median length7
Mean length7
Min length7

Characters and Unicode

Total characters35000
Distinct characters11
Distinct categories2 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique203 ?
Unique (%)4.1%

Sample

1st row2017-07
2nd row2017-07
3rd row2001-07
4th row2001-07
5th row1992-03

Common Values

ValueCountFrequency (%)
2016-1283
 
1.7%
2015-0274
 
1.5%
2001-0653
 
1.1%
2012-1251
 
1.0%
2014-1241
 
0.8%
2013-1241
 
0.8%
2015-1236
 
0.7%
2003-0635
 
0.7%
2000-0635
 
0.7%
2002-0734
 
0.7%
Other values (905)4517
90.3%

Length

2022-11-17T14:35:30.787232image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
2016-1283
 
1.7%
2015-0274
 
1.5%
2001-0653
 
1.1%
2012-1251
 
1.0%
2014-1241
 
0.8%
2013-1241
 
0.8%
2015-1236
 
0.7%
2003-0635
 
0.7%
2000-0635
 
0.7%
2002-0734
 
0.7%
Other values (905)4517
90.3%

Most occurring characters

ValueCountFrequency (%)
08053
23.0%
16842
19.5%
-5000
14.3%
24333
12.4%
93663
10.5%
61488
 
4.3%
81312
 
3.7%
71298
 
3.7%
51201
 
3.4%
4908
 
2.6%

Most occurring categories

ValueCountFrequency (%)
Decimal Number30000
85.7%
Dash Punctuation5000
 
14.3%

Most frequent character per category

Decimal Number
ValueCountFrequency (%)
08053
26.8%
16842
22.8%
24333
14.4%
93663
12.2%
61488
 
5.0%
81312
 
4.4%
71298
 
4.3%
51201
 
4.0%
4908
 
3.0%
3902
 
3.0%
Dash Punctuation
ValueCountFrequency (%)
-5000
100.0%

Most occurring scripts

ValueCountFrequency (%)
Common35000
100.0%

Most frequent character per script

Common
ValueCountFrequency (%)
08053
23.0%
16842
19.5%
-5000
14.3%
24333
12.4%
93663
10.5%
61488
 
4.3%
81312
 
3.7%
71298
 
3.7%
51201
 
3.4%
4908
 
2.6%

Most occurring blocks

ValueCountFrequency (%)
ASCII35000
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
08053
23.0%
16842
19.5%
-5000
14.3%
24333
12.4%
93663
10.5%
61488
 
4.3%
81312
 
3.7%
71298
 
3.7%
51201
 
3.4%
4908
 
2.6%

planned-retirement-year-month
Categorical

HIGH CORRELATION
MISSING

Distinct36
Distinct (%)30.5%
Missing4882
Missing (%)97.6%
Memory size39.2 KiB
2017-12
18 
2020-11
10 
2017-08
2023-12
2024-12
 
6
Other values (31)
69 

Length

Max length7
Median length7
Mean length7
Min length7

Characters and Unicode

Total characters826
Distinct characters11
Distinct categories2 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique12 ?
Unique (%)10.2%

Sample

1st row2026-12
2nd row2021-05
3rd row2021-07
4th row2021-06
5th row2021-08

Common Values

ValueCountFrequency (%)
2017-1218
 
0.4%
2020-1110
 
0.2%
2017-088
 
0.2%
2023-127
 
0.1%
2024-126
 
0.1%
2020-125
 
0.1%
2031-125
 
0.1%
2021-065
 
0.1%
2025-124
 
0.1%
2022-114
 
0.1%
Other values (26)46
 
0.9%
(Missing)4882
97.6%

Length

2022-11-17T14:35:30.903779image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
2017-1218
 
15.3%
2020-1110
 
8.5%
2017-088
 
6.8%
2023-127
 
5.9%
2024-126
 
5.1%
2020-125
 
4.2%
2031-125
 
4.2%
2021-065
 
4.2%
2026-124
 
3.4%
2025-124
 
3.4%
Other values (26)46
39.0%

Most occurring characters

ValueCountFrequency (%)
2240
29.1%
0180
21.8%
1162
19.6%
-118
14.3%
738
 
4.6%
821
 
2.5%
619
 
2.3%
318
 
2.2%
913
 
1.6%
411
 
1.3%

Most occurring categories

ValueCountFrequency (%)
Decimal Number708
85.7%
Dash Punctuation118
 
14.3%

Most frequent character per category

Decimal Number
ValueCountFrequency (%)
2240
33.9%
0180
25.4%
1162
22.9%
738
 
5.4%
821
 
3.0%
619
 
2.7%
318
 
2.5%
913
 
1.8%
411
 
1.6%
56
 
0.8%
Dash Punctuation
ValueCountFrequency (%)
-118
100.0%

Most occurring scripts

ValueCountFrequency (%)
Common826
100.0%

Most frequent character per script

Common
ValueCountFrequency (%)
2240
29.1%
0180
21.8%
1162
19.6%
-118
14.3%
738
 
4.6%
821
 
2.5%
619
 
2.3%
318
 
2.2%
913
 
1.6%
411
 
1.3%

Most occurring blocks

ValueCountFrequency (%)
ASCII826
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
2240
29.1%
0180
21.8%
1162
19.6%
-118
14.3%
738
 
4.6%
821
 
2.5%
619
 
2.3%
318
 
2.2%
913
 
1.6%
411
 
1.3%

planned-derate-year-month
Unsupported

MISSING
REJECTED
UNSUPPORTED

Missing5000
Missing (%)100.0%
Memory size39.2 KiB

planned-derate-summer-cap-mw
Unsupported

MISSING
REJECTED
UNSUPPORTED

Missing5000
Missing (%)100.0%
Memory size39.2 KiB

planned-uprate-year-month
Categorical

HIGH CORRELATION
MISSING
UNIFORM

Distinct23
Distinct (%)88.5%
Missing4974
Missing (%)99.5%
Memory size39.2 KiB
2021-05
2018-05
2022-12
2018-01
 
1
2019-12
 
1
Other values (18)
18 

Length

Max length7
Median length7
Mean length7
Min length7

Characters and Unicode

Total characters182
Distinct characters11
Distinct categories2 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique20 ?
Unique (%)76.9%

Sample

1st row2022-12
2nd row2022-12
3rd row2023-12
4th row2024-12
5th row2025-12

Common Values

ValueCountFrequency (%)
2021-052
 
< 0.1%
2018-052
 
< 0.1%
2022-122
 
< 0.1%
2018-011
 
< 0.1%
2019-121
 
< 0.1%
2018-121
 
< 0.1%
2018-091
 
< 0.1%
2019-041
 
< 0.1%
2018-111
 
< 0.1%
2018-021
 
< 0.1%
Other values (13)13
 
0.3%
(Missing)4974
99.5%

Length

2022-11-17T14:35:31.016950image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
2021-052
 
7.7%
2022-122
 
7.7%
2018-052
 
7.7%
2022-061
 
3.8%
2023-121
 
3.8%
2024-121
 
3.8%
2025-121
 
3.8%
2026-121
 
3.8%
2027-121
 
3.8%
2023-061
 
3.8%
Other values (13)13
50.0%

Most occurring characters

ValueCountFrequency (%)
254
29.7%
044
24.2%
127
14.8%
-26
14.3%
88
 
4.4%
56
 
3.3%
95
 
2.7%
65
 
2.7%
43
 
1.6%
33
 
1.6%

Most occurring categories

ValueCountFrequency (%)
Decimal Number156
85.7%
Dash Punctuation26
 
14.3%

Most frequent character per category

Decimal Number
ValueCountFrequency (%)
254
34.6%
044
28.2%
127
17.3%
88
 
5.1%
56
 
3.8%
95
 
3.2%
65
 
3.2%
43
 
1.9%
33
 
1.9%
71
 
0.6%
Dash Punctuation
ValueCountFrequency (%)
-26
100.0%

Most occurring scripts

ValueCountFrequency (%)
Common182
100.0%

Most frequent character per script

Common
ValueCountFrequency (%)
254
29.7%
044
24.2%
127
14.8%
-26
14.3%
88
 
4.4%
56
 
3.3%
95
 
2.7%
65
 
2.7%
43
 
1.6%
33
 
1.6%

Most occurring blocks

ValueCountFrequency (%)
ASCII182
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
254
29.7%
044
24.2%
127
14.8%
-26
14.3%
88
 
4.4%
56
 
3.3%
95
 
2.7%
65
 
2.7%
43
 
1.6%
33
 
1.6%

planned-uprate-summer-cap-mw
Real number (ℝ≥0)

HIGH CORRELATION
MISSING

Distinct12
Distinct (%)46.2%
Missing4974
Missing (%)99.5%
Infinite0
Infinite (%)0.0%
Mean38.31153846
Minimum0.5
Maximum155
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size39.2 KiB
2022-11-17T14:35:31.126578image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum0.5
5-th percentile0.825
Q16
median6.4
Q363
95-th percentile155
Maximum155
Range154.5
Interquartile range (IQR)57

Descriptive statistics

Standard deviation49.62692275
Coefficient of variation (CV)1.295351864
Kurtosis1.44674801
Mean38.31153846
Median Absolute Deviation (MAD)5.9
Skewness1.524962208
Sum996.1
Variance2462.831462
MonotonicityNot monotonic
2022-11-17T14:35:31.240734image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=12)
ValueCountFrequency (%)
66
 
0.1%
654
 
0.1%
573
 
0.1%
1553
 
0.1%
6.42
 
< 0.1%
0.52
 
< 0.1%
3.51
 
< 0.1%
41
 
< 0.1%
161
 
< 0.1%
201
 
< 0.1%
Other values (2)2
 
< 0.1%
(Missing)4974
99.5%
ValueCountFrequency (%)
0.52
 
< 0.1%
1.81
 
< 0.1%
3.51
 
< 0.1%
41
 
< 0.1%
51
 
< 0.1%
66
0.1%
6.42
 
< 0.1%
161
 
< 0.1%
201
 
< 0.1%
573
0.1%
ValueCountFrequency (%)
1553
0.1%
654
0.1%
573
0.1%
201
 
< 0.1%
161
 
< 0.1%
6.42
 
< 0.1%
66
0.1%
51
 
< 0.1%
41
 
< 0.1%
3.51
 
< 0.1%

county
Categorical

HIGH CARDINALITY

Distinct714
Distinct (%)14.3%
Missing4
Missing (%)0.1%
Memory size39.2 KiB
San Bernardino
 
150
Los Angeles
 
89
Kern
 
78
Riverside
 
70
Jackson
 
55
Other values (709)
4554 

Length

Max length25
Median length19
Mean length7.685348279
Min length3

Characters and Unicode

Total characters38396
Distinct characters53
Distinct categories4 ?
Distinct scripts2 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique159 ?
Unique (%)3.2%

Sample

1st rowCalhoun
2nd rowCalhoun
3rd rowPecos
4th rowPecos
5th rowSalem

Common Values

ValueCountFrequency (%)
San Bernardino150
 
3.0%
Los Angeles89
 
1.8%
Kern78
 
1.6%
Riverside70
 
1.4%
Jackson55
 
1.1%
Harris54
 
1.1%
Douglas50
 
1.0%
Orange49
 
1.0%
Franklin48
 
1.0%
Wayne44
 
0.9%
Other values (704)4309
86.2%

Length

2022-11-17T14:35:31.380898image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
san193
 
3.3%
bernardino150
 
2.6%
los89
 
1.5%
angeles89
 
1.5%
kern78
 
1.3%
riverside70
 
1.2%
new70
 
1.2%
st59
 
1.0%
jackson55
 
0.9%
harris54
 
0.9%
Other values (740)4954
84.5%

Most occurring characters

ValueCountFrequency (%)
a4002
 
10.4%
e3788
 
9.9%
n3339
 
8.7%
o2827
 
7.4%
r2739
 
7.1%
i2166
 
5.6%
l1824
 
4.8%
s1661
 
4.3%
t1468
 
3.8%
d1168
 
3.0%
Other values (43)13414
34.9%

Most occurring categories

ValueCountFrequency (%)
Lowercase Letter31589
82.3%
Uppercase Letter5940
 
15.5%
Space Separator865
 
2.3%
Other Punctuation2
 
< 0.1%

Most frequent character per category

Lowercase Letter
ValueCountFrequency (%)
a4002
12.7%
e3788
12.0%
n3339
10.6%
o2827
8.9%
r2739
8.7%
i2166
 
6.9%
l1824
 
5.8%
s1661
 
5.3%
t1468
 
4.6%
d1168
 
3.7%
Other values (16)6607
20.9%
Uppercase Letter
ValueCountFrequency (%)
S832
14.0%
C594
 
10.0%
B462
 
7.8%
L373
 
6.3%
M362
 
6.1%
A346
 
5.8%
H345
 
5.8%
W314
 
5.3%
P278
 
4.7%
D222
 
3.7%
Other values (15)1812
30.5%
Space Separator
ValueCountFrequency (%)
865
100.0%
Other Punctuation
ValueCountFrequency (%)
'2
100.0%

Most occurring scripts

ValueCountFrequency (%)
Latin37529
97.7%
Common867
 
2.3%

Most frequent character per script

Latin
ValueCountFrequency (%)
a4002
 
10.7%
e3788
 
10.1%
n3339
 
8.9%
o2827
 
7.5%
r2739
 
7.3%
i2166
 
5.8%
l1824
 
4.9%
s1661
 
4.4%
t1468
 
3.9%
d1168
 
3.1%
Other values (41)12547
33.4%
Common
ValueCountFrequency (%)
865
99.8%
'2
 
0.2%

Most occurring blocks

ValueCountFrequency (%)
ASCII38396
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
a4002
 
10.4%
e3788
 
9.9%
n3339
 
8.7%
o2827
 
7.4%
r2739
 
7.1%
i2166
 
5.6%
l1824
 
4.8%
s1661
 
4.3%
t1468
 
3.8%
d1168
 
3.0%
Other values (43)13414
34.9%

longitude
Real number (ℝ)

HIGH CORRELATION

Distinct1968
Distinct (%)39.4%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean-95.61612094
Minimum-170.475661
Maximum93.968056
Zeros0
Zeros (%)0.0%
Negative4994
Negative (%)99.9%
Memory size39.2 KiB
2022-11-17T14:35:31.525430image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum-170.475661
5-th percentile-132.821435
Q1-112.904028
median-91.297894
Q3-80.780246
95-th percentile-72.776111
Maximum93.968056
Range264.443717
Interquartile range (IQR)32.123782

Descriptive statistics

Standard deviation21.10085811
Coefficient of variation (CV)-0.2206830596
Kurtosis7.200314911
Mean-95.61612094
Median Absolute Deviation (MAD)12.226066
Skewness-0.2178077608
Sum-478080.6047
Variance445.2462131
MonotonicityNot monotonic
2022-11-17T14:35:31.697327image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
-77.46718527
 
0.5%
-99.091927
 
0.5%
-87.986124
 
0.5%
-90.1486822
 
0.4%
-91.55122120
 
0.4%
-95.23507820
 
0.4%
-76.840818
 
0.4%
-95.530617
 
0.3%
-86.400617
 
0.3%
-92.58936417
 
0.3%
Other values (1958)4791
95.8%
ValueCountFrequency (%)
-170.4756612
 
< 0.1%
-166.7372114
0.1%
-165.4298148
0.2%
-164.65441
 
< 0.1%
-164.5384472
 
< 0.1%
-163.7290724
0.1%
-163.5531064
0.1%
-163.0058334
0.1%
-162.9657283
 
0.1%
-162.8807063
 
0.1%
ValueCountFrequency (%)
93.9680564
 
0.1%
72.0219442
 
< 0.1%
-68.211
 
< 0.1%
-68.635542
 
< 0.1%
-68.70436813
0.3%
-69.5835278
0.2%
-69.6474412
 
< 0.1%
-69.8121681
 
< 0.1%
-69.86584
 
0.1%
-70.05172
 
< 0.1%

latitude
Real number (ℝ≥0)

HIGH CORRELATION

Distinct1972
Distinct (%)39.4%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean39.24465948
Minimum19.6316
Maximum70.642877
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size39.2 KiB
2022-11-17T14:35:31.885377image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Quantile statistics

Minimum19.6316
5-th percentile29.72297075
Q134.632509
median38.7506
Q342.704391
95-th percentile48.2142
Maximum70.642877
Range51.011277
Interquartile range (IQR)8.071882

Descriptive statistics

Standard deviation7.047003619
Coefficient of variation (CV)0.179565926
Kurtosis4.077793006
Mean39.24465948
Median Absolute Deviation (MAD)4.0464
Skewness1.343023199
Sum196223.2974
Variance49.66026
MonotonicityNot monotonic
2022-11-17T14:35:32.087309image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
37.19358427
 
0.5%
28.927527
 
0.5%
36.027824
 
0.5%
35.07408722
 
0.4%
40.97182620
 
0.4%
38.97402220
 
0.4%
42.928118
 
0.4%
29.941717
 
0.3%
33.43517
 
0.3%
33.29614617
 
0.3%
Other values (1962)4791
95.8%
ValueCountFrequency (%)
19.63162
 
< 0.1%
19.70412
 
< 0.1%
19.70525
0.1%
19.72032
 
< 0.1%
19.72642
 
< 0.1%
19.73177
0.1%
20.02521
 
< 0.1%
20.09396
0.1%
20.2572521
 
< 0.1%
21.1064
0.1%
ValueCountFrequency (%)
70.6428775
0.1%
70.48267
0.1%
70.2205656
0.1%
70.1256174
0.1%
69.7408334
0.1%
68.3484244
0.1%
68.137955
0.1%
67.7266442
 
< 0.1%
67.5709313
0.1%
67.087983
0.1%

nameplate-capacity-mw-units
Categorical

CONSTANT
HIGH CORRELATION
REJECTED

Distinct1
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
MW
5000 

Length

Max length2
Median length2
Mean length2
Min length2

Characters and Unicode

Total characters10000
Distinct characters2
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowMW
2nd rowMW
3rd rowMW
4th rowMW
5th rowMW

Common Values

ValueCountFrequency (%)
MW5000
100.0%

Length

2022-11-17T14:35:32.231903image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-11-17T14:35:32.342596image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
ValueCountFrequency (%)
mw5000
100.0%

Most occurring characters

ValueCountFrequency (%)
M5000
50.0%
W5000
50.0%

Most occurring categories

ValueCountFrequency (%)
Uppercase Letter10000
100.0%

Most frequent character per category

Uppercase Letter
ValueCountFrequency (%)
M5000
50.0%
W5000
50.0%

Most occurring scripts

ValueCountFrequency (%)
Latin10000
100.0%

Most frequent character per script

Latin
ValueCountFrequency (%)
M5000
50.0%
W5000
50.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII10000
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
M5000
50.0%
W5000
50.0%

net-summer-capacity-mw-units
Categorical

CONSTANT
HIGH CORRELATION
REJECTED

Distinct1
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
MW
5000 

Length

Max length2
Median length2
Mean length2
Min length2

Characters and Unicode

Total characters10000
Distinct characters2
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowMW
2nd rowMW
3rd rowMW
4th rowMW
5th rowMW

Common Values

ValueCountFrequency (%)
MW5000
100.0%

Length

2022-11-17T14:35:32.435556image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-11-17T14:35:32.544541image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
ValueCountFrequency (%)
mw5000
100.0%

Most occurring characters

ValueCountFrequency (%)
M5000
50.0%
W5000
50.0%

Most occurring categories

ValueCountFrequency (%)
Uppercase Letter10000
100.0%

Most frequent character per category

Uppercase Letter
ValueCountFrequency (%)
M5000
50.0%
W5000
50.0%

Most occurring scripts

ValueCountFrequency (%)
Latin10000
100.0%

Most frequent character per script

Latin
ValueCountFrequency (%)
M5000
50.0%
W5000
50.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII10000
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
M5000
50.0%
W5000
50.0%

net-winter-capacity-mw-units
Categorical

CONSTANT
HIGH CORRELATION
REJECTED

Distinct1
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
MW
5000 

Length

Max length2
Median length2
Mean length2
Min length2

Characters and Unicode

Total characters10000
Distinct characters2
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowMW
2nd rowMW
3rd rowMW
4th rowMW
5th rowMW

Common Values

ValueCountFrequency (%)
MW5000
100.0%

Length

2022-11-17T14:35:32.637081image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-11-17T14:35:32.748867image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
ValueCountFrequency (%)
mw5000
100.0%

Most occurring characters

ValueCountFrequency (%)
M5000
50.0%
W5000
50.0%

Most occurring categories

ValueCountFrequency (%)
Uppercase Letter10000
100.0%

Most frequent character per category

Uppercase Letter
ValueCountFrequency (%)
M5000
50.0%
W5000
50.0%

Most occurring scripts

ValueCountFrequency (%)
Latin10000
100.0%

Most frequent character per script

Latin
ValueCountFrequency (%)
M5000
50.0%
W5000
50.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII10000
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
M5000
50.0%
W5000
50.0%

planned-derate-summer-cap-mw-units
Categorical

CONSTANT
HIGH CORRELATION
REJECTED

Distinct1
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
MW
5000 

Length

Max length2
Median length2
Mean length2
Min length2

Characters and Unicode

Total characters10000
Distinct characters2
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowMW
2nd rowMW
3rd rowMW
4th rowMW
5th rowMW

Common Values

ValueCountFrequency (%)
MW5000
100.0%

Length

2022-11-17T14:35:32.843610image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-11-17T14:35:32.954364image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
ValueCountFrequency (%)
mw5000
100.0%

Most occurring characters

ValueCountFrequency (%)
M5000
50.0%
W5000
50.0%

Most occurring categories

ValueCountFrequency (%)
Uppercase Letter10000
100.0%

Most frequent character per category

Uppercase Letter
ValueCountFrequency (%)
M5000
50.0%
W5000
50.0%

Most occurring scripts

ValueCountFrequency (%)
Latin10000
100.0%

Most frequent character per script

Latin
ValueCountFrequency (%)
M5000
50.0%
W5000
50.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII10000
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
M5000
50.0%
W5000
50.0%

planned-uprate-summer-cap-mw-units
Categorical

CONSTANT
HIGH CORRELATION
REJECTED

Distinct1
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size39.2 KiB
MW
5000 

Length

Max length2
Median length2
Mean length2
Min length2

Characters and Unicode

Total characters10000
Distinct characters2
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowMW
2nd rowMW
3rd rowMW
4th rowMW
5th rowMW

Common Values

ValueCountFrequency (%)
MW5000
100.0%

Length

2022-11-17T14:35:33.051962image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-11-17T14:35:33.165725image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
ValueCountFrequency (%)
mw5000
100.0%

Most occurring characters

ValueCountFrequency (%)
M5000
50.0%
W5000
50.0%

Most occurring categories

ValueCountFrequency (%)
Uppercase Letter10000
100.0%

Most frequent character per category

Uppercase Letter
ValueCountFrequency (%)
M5000
50.0%
W5000
50.0%

Most occurring scripts

ValueCountFrequency (%)
Latin10000
100.0%

Most frequent character per script

Latin
ValueCountFrequency (%)
M5000
50.0%
W5000
50.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII10000
100.0%

Most frequent character per block

ASCII
ValueCountFrequency (%)
M5000
50.0%
W5000
50.0%

Interactions

2022-11-17T14:35:21.242622image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:11.669018image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:12.851615image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:14.060666image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:15.308302image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:16.539263image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:17.764058image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:18.975537image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:20.071755image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:21.371888image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:11.799675image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:12.982843image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:14.194438image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:15.442750image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:16.672010image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:17.897504image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:19.105341image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:20.199032image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:21.507401image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:11.931115image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:13.121627image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:14.333803image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:15.580764image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:16.811211image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:18.035998image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:19.220086image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:20.330942image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:21.638811image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:12.063392image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:13.259055image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:14.469846image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:15.719104image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:16.948719image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:18.173105image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:19.339089image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:20.462934image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:21.774821image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:12.198462image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:13.398138image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:14.609972image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:15.865158image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:17.087422image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:18.310401image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:19.461784image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:20.596898image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:21.908655image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:12.331708image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:13.536259image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:14.761809image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:16.006849image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:17.226529image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:18.447772image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:19.580802image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:20.732758image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:22.041831image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:12.463511image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:13.671610image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:14.916151image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:16.145644image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:17.361934image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:18.582939image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:19.698168image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:20.864237image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:22.171105image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:12.594011image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:13.794256image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:15.042392image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:16.273337image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:17.494774image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:18.708718image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:19.828531image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:20.985462image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:22.301716image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:12.722645image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:13.925853image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:15.176195image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:16.405549image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:17.630312image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:18.842742image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:19.943919image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
2022-11-17T14:35:21.114264image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Correlations

2022-11-17T14:35:33.263601image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Spearman's ρ

The Spearman's rank correlation coefficient (ρ) is a measure of monotonic correlation between two variables, and is therefore better in catching nonlinear monotonic correlations than Pearson's r. It's value lies between -1 and +1, -1 indicating total negative monotonic correlation, 0 indicating no monotonic correlation and 1 indicating total positive monotonic correlation.

To calculate ρ for two variables X and Y, one divides the covariance of the rank variables of X and Y by the product of their standard deviations.
2022-11-17T14:35:33.489653image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Pearson's r

The Pearson's correlation coefficient (r) is a measure of linear correlation between two variables. It's value lies between -1 and +1, -1 indicating total negative linear correlation, 0 indicating no linear correlation and 1 indicating total positive linear correlation. Furthermore, r is invariant under separate changes in location and scale of the two variables, implying that for a linear function the angle to the x-axis does not affect r.

To calculate r for two variables X and Y, one divides the covariance of X and Y by the product of their standard deviations.
2022-11-17T14:35:33.714280image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Kendall's τ

Similarly to Spearman's rank correlation coefficient, the Kendall rank correlation coefficient (τ) measures ordinal association between two variables. It's value lies between -1 and +1, -1 indicating total negative correlation, 0 indicating no correlation and 1 indicating total positive correlation.

To calculate τ for two variables X and Y, one determines the number of concordant and discordant pairs of observations. τ is given by the number of concordant pairs minus the discordant pairs divided by the total number of pairs.
2022-11-17T14:35:33.984337image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Cramér's V (φc)

Cramér's V is an association measure for nominal random variables. The coefficient ranges from 0 to 1, with 0 indicating independence and 1 indicating perfect association. The empirical estimators used for Cramér's V have been proved to be biased, even for large samples. We use a bias-corrected measure that has been proposed by Bergsma in 2013 that can be found here.
2022-11-17T14:35:34.322300image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/

Phik (φk)

Phik (φk) is a new and practical correlation coefficient that works consistently between categorical, ordinal and interval variables, captures non-linear dependency and reverts to the Pearson correlation coefficient in case of a bivariate normal input distribution. There is extensive documentation available here.

Missing values

2022-11-17T14:35:22.621433image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
A simple visualization of nullity by column.
2022-11-17T14:35:23.834605image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
Nullity matrix is a data-dense display which lets you quickly visually pick out patterns in data completion.
2022-11-17T14:35:24.238722image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
The correlation heatmap measures nullity correlation: how strongly the presence or absence of one variable affects the presence of another.
2022-11-17T14:35:24.474193image/svg+xmlMatplotlib v3.5.1, https://matplotlib.org/
The dendrogram allows you to more fully correlate variable completion, revealing trends deeper than the pairwise ones visible in the correlation heatmap.

Sample

First rows

Unnamed: 0periodstateidstateNamesectorsectorNameentityidentityNameplantidplantNamegeneratoridunittechnologyenergy_source_codeenergy-source-descprime_mover_codebalancing_authority_codebalancing-authority-namestatusstatusDescriptionnameplate-capacity-mwnet-summer-capacity-mwnet-winter-capacity-mwoperating-year-monthplanned-retirement-year-monthplanned-derate-year-monthplanned-derate-summer-cap-mwplanned-uprate-year-monthplanned-uprate-summer-cap-mwcountylongitudelatitudenameplate-capacity-mw-unitsnet-summer-capacity-mw-unitsnet-winter-capacity-mw-unitsplanned-derate-summer-cap-mw-unitsplanned-uprate-summer-cap-mw-units
002020-09TXTexasipp-non-chpIPP Non-CHP61199Peaker Power, LLC60459Port Comfort Power LLCPC1NaNNatural Gas Fired Combustion TurbineNGNatural GasGTERCOElectric Reliability Council of Texas, Inc.OPOperating60.543.046.02017-07NaNNaNNaNNaNNaNCalhoun-96.54621028.648070MWMWMWMWMW
112020-09TXTexasipp-non-chpIPP Non-CHP61199Peaker Power, LLC60459Port Comfort Power LLCPC2NaNNatural Gas Fired Combustion TurbineNGNatural GasGTERCOElectric Reliability Council of Texas, Inc.OPOperating60.543.046.02017-07NaNNaNNaNNaNNaNCalhoun-96.54621028.648070MWMWMWMWMW
222020-09TXTexasipp-non-chpIPP Non-CHP14628Pecos Wind I LP55796Woodward Mountain I1NaNOnshore Wind TurbineWNDWindWTERCOElectric Reliability Council of Texas, Inc.OPOperating82.082.082.02001-07NaNNaNNaNNaNNaNPecos-102.41406730.951400MWMWMWMWMW
332020-09TXTexasipp-non-chpIPP Non-CHP14629Pecos Wind II LP55795Woodward Mountain II1NaNOnshore Wind TurbineWNDWindWTERCOElectric Reliability Council of Texas, Inc.OPOperating78.078.078.02001-07NaNNaNNaNNaNNaNPecos-102.41406730.951400MWMWMWMWMW
442020-09NJNew Jerseyipp-non-chpIPP Non-CHP50160Pedricktown Cogeneration Company LP10099Pedricktown Cogeneration Company LPGEN1CC1Natural Gas Fired Combined CycleNGNatural GasCTPJMPJM Interconnection, LLCOPOperating95.2112.8112.61992-03NaNNaNNaNNaNNaNSalem-75.42380039.766800MWMWMWMWMW
552020-09NJNew Jerseyipp-non-chpIPP Non-CHP50160Pedricktown Cogeneration Company LP10099Pedricktown Cogeneration Company LPGEN2CC1Natural Gas Fired Combined CycleNGNatural GasCAPJMPJM Interconnection, LLCOPOperating45.0NaNNaN1992-03NaNNaNNaNNaNNaNSalem-75.42380039.766800MWMWMWMWMW
662020-09MNMinnesotaipp-non-chpIPP Non-CHP60823Pegasus Community Solar61175Pegasus Community SolarCPCS1NaNSolar PhotovoltaicSUNSolarPVMISOMidcontinent Independent Transmission System Operator, Inc..OPOperating1.00.90.92017-08NaNNaNNaNNaNNaNStearns-95.12468245.495453MWMWMWMWMW
772020-09MNMinnesotaipp-non-chpIPP Non-CHP60823Pegasus Community Solar61175Pegasus Community SolarCPCS2NaNSolar PhotovoltaicSUNSolarPVMISOMidcontinent Independent Transmission System Operator, Inc..OPOperating1.00.90.92017-08NaNNaNNaNNaNNaNStearns-95.12468245.495453MWMWMWMWMW
882020-09MIMichiganipp-non-chpIPP Non-CHP61521Pegasus Wind, LLC61916Pegasus WindPWECNaNOnshore Wind TurbineWNDWindWTMISOMidcontinent Independent Transmission System Operator, Inc..OPOperating48.048.048.02019-12NaNNaNNaNNaNNaNTuscola-83.50721043.452003MWMWMWMWMW
992020-09MIMichiganipp-non-chpIPP Non-CHP61521Pegasus Wind, LLC61916Pegasus WindPWEC2NaNOnshore Wind TurbineWNDWindWTMISOMidcontinent Independent Transmission System Operator, Inc..OPOperating130.0130.0130.02020-09NaNNaNNaNNaNNaNTuscola-83.50721043.452003MWMWMWMWMW

Last rows

Unnamed: 0periodstateidstateNamesectorsectorNameentityidentityNameplantidplantNamegeneratoridunittechnologyenergy_source_codeenergy-source-descprime_mover_codebalancing_authority_codebalancing-authority-namestatusstatusDescriptionnameplate-capacity-mwnet-summer-capacity-mwnet-winter-capacity-mwoperating-year-monthplanned-retirement-year-monthplanned-derate-year-monthplanned-derate-summer-cap-mwplanned-uprate-year-monthplanned-uprate-summer-cap-mwcountylongitudelatitudenameplate-capacity-mw-unitsnet-summer-capacity-mw-unitsnet-winter-capacity-mw-unitsplanned-derate-summer-cap-mw-unitsplanned-uprate-summer-cap-mw-units
499049902017-01ILIllinoiselectric-utilityElectric Utility3153City of Casey - (IL)56053Casey City of2NaNPetroleum LiquidsDFODisillate Fuel OilICMISOMidcontinent Independent Transmission System Operator, Inc..SBStandby/Backup: available for service but not normally used1.81.81.82002-05NaNNaNNaNNaNNaNClark-87.99259239.310555MWMWMWMWMW
499149912017-01ILIllinoiselectric-utilityElectric Utility3153City of Casey - (IL)56053Casey City of3NaNPetroleum LiquidsDFODisillate Fuel OilICMISOMidcontinent Independent Transmission System Operator, Inc..SBStandby/Backup: available for service but not normally used1.81.81.82002-05NaNNaNNaNNaNNaNClark-87.99259239.310555MWMWMWMWMW
499249922017-01COColoradoelectric-utilityElectric Utility3227City of Center - (CO)491Center3NaNPetroleum LiquidsDFODisillate Fuel OilICPSCOPublic Service Company of ColoradoSBStandby/Backup: available for service but not normally used0.50.50.51963-07NaNNaNNaNNaNNaNSaguache-106.10467037.753606MWMWMWMWMW
499349932017-01COColoradoelectric-utilityElectric Utility3227City of Center - (CO)491Center5NaNPetroleum LiquidsDFODisillate Fuel OilICPSCOPublic Service Company of ColoradoSBStandby/Backup: available for service but not normally used1.01.01.01959-08NaNNaNNaNNaNNaNSaguache-106.10467037.753606MWMWMWMWMW
499449942017-09SCSouth Carolinaipp-non-chpIPP Non-CHP54810Broad River Energy LLC55166Broad River Energy CenterCT01NaNNatural Gas Fired Combustion TurbineNGNatural GasGTDUKDuke Energy CarolinasOPOperating197.0173.4200.82000-07NaNNaNNaNNaNNaNCherokee-81.57500035.078600MWMWMWMWMW
499549952017-09SCSouth Carolinaipp-non-chpIPP Non-CHP54810Broad River Energy LLC55166Broad River Energy CenterCT02NaNNatural Gas Fired Combustion TurbineNGNatural GasGTDUKDuke Energy CarolinasOPOperating197.0170.5197.32000-07NaNNaNNaNNaNNaNCherokee-81.57500035.078600MWMWMWMWMW
499649962017-09SCSouth Carolinaipp-non-chpIPP Non-CHP54810Broad River Energy LLC55166Broad River Energy CenterCT03NaNNatural Gas Fired Combustion TurbineNGNatural GasGTDUKDuke Energy CarolinasOPOperating197.0169.4196.02000-07NaNNaNNaNNaNNaNCherokee-81.57500035.078600MWMWMWMWMW
499749972017-09SCSouth Carolinaipp-non-chpIPP Non-CHP54810Broad River Energy LLC55166Broad River Energy CenterCT04NaNNatural Gas Fired Combustion TurbineNGNatural GasGTDUKDuke Energy CarolinasOPOperating197.0174.0201.42001-06NaNNaNNaNNaNNaNCherokee-81.57500035.078600MWMWMWMWMW
499849982017-06NYNew Yorkipp-non-chpIPP Non-CHP5511CCI Roseton LLC8006Roseton Generating Facility2NaNNatural Gas Steam TurbineNGNatural GasSTNYISNew York Independent System OperatorOPOperating621.0604.0605.71974-09NaNNaNNaNNaNNaNOrange-73.96626941.573783MWMWMWMWMW
499949992017-06NCNorth Carolinaipp-non-chpIPP Non-CHP60865CD Global Solar Holdings, LLC61258Innovative Solar 35, LLCISS35NaNSolar PhotovoltaicSUNSolarPVCPLEDuke Energy Progress EastOPOperating1.91.91.92017-02NaNNaNNaNNaNNaNDuplin-77.82500035.046000MWMWMWMWMW